Phylogeny of Psephenidae (Coleoptera: Byrrhoidea) based on larval, pupal and adult characters

CHI-FENG LEE 1, MASATAKA SATÔ 2, WILLIAM D. SHEPARD 3 and MANFRED A. JÄCH 4

1Institute of Biodiversity, National Cheng Kung University, Tainan 701, Taiwan, 2Dia Cuore 306, Kamegahora 3-1404, Midoriku, Nagoya, 458-0804, Japan, 3Essig Museum of Entomology, 201 Wellman Hall, University of California, Berkeley, CA 94720, U.S.A., and 4Natural History Museum, Burgring 7, A-1010 Wien, Austria

Abstract. We conducted the first comprehensive phylogenetic analysis of Psephenidae, based on 143 morphological characters of adults, larvae and pupae and coded for 34 taxa, representing three outgroups and 31 psephenid genera, including four undescribed ones. A strict consensus tree calculated (439 steps, consistency index = 0.45, retention index = 0.75) from the two most-parsimonious cladograms indicated that the monophyly of the family and subfamilies is supported, with the exception of Eubriinae, which is paraphyletic when including Afroebria. Here a new subfamily, Afroebriinae (subfam.n.), is formally established for Afroebria. The analysis also indicated that the ‘streamlined’ larva is a derived adaptive radiation. Here, suprageneric taxonomy and the evolution of some significant characters are discussed. Keys are provided to the subfamilies and genera of Psephenidae considering larvae, adults and pupae.

Introduction

Psephenidae, the ‘water penny’ beetles, are characterized by the peculiar larval body shape (Figs 4–7). The phylogeny of this family has been difficult to understand because of two past problems. One was taxonomic confusion, caused especially by Pic (1916, 1918, 1923, 1934, 1938, 1944). Although he assigned all eubriine species to Macroeubria, Drupeus, Grammeubria, and Ectopria, Drupeus belongs to a genus of Ptilodactylidae (Satô, 1983), and Grammeubria has been synonymized with Ectopria (Satô, 1985). The second problem is a lack of association of adults and immature stages. Identification of the Psephenidae is mostly based on adult stages, but larvae are more easily available, as they are long-lived and common in streams. If associated with adults, larval characters would contribute significantly to phylogenetic studies. Unfortunately, few species have had larval–adult associations, especially for those from the Oriental Region. For example, the subfamily Eubrianacinae, comprising some 40 species, had been regarded as mono-generic, with larvae only of Eubrianax edwardsii (LeConte) described (Blackwelder, 1930). After a re-examination of type specimens and the association of adults and immature stages by rearing, five new genera were proposed for Oriental taxa and a well-resolved phylogenetic tree was obtained for genera within the family (Lee et al., 1999a, b, c, 2000a, b, 2001, 2003a) by using larval, pupal and adult characters. Thus, it seems promising to conduct a phylogenetic study of the whole family by combining characters of adults and immature stages.

Pic’s problems have been solved by revisionary studies (Appendix 1) (Jäch & Lee, 1994; Lee & Yang, 1995, 1996; Lee et al., 1998). In addition, successful associations of immature stages with adults by rearing have been made for Homoeogenus (Lee & Yang, 1993), Schinostetus (Lee et al., 1993), Nipponeubria (Lee & Satô, 1996), Macroeubria (Lee et al., 1997), Granuleubria (Lee & Yang, 1999), Mubrianax (Lee et al., 1999b), Jinbrianax (Lee et al., 1999c), Odontanax (Lee et al., 2000a), Jaechanax (Lee et al., 2000b), Afrobianax (Lee et al., 2003a), and Microebria (Lee & Yang, 2002) allowing the inclusion of larval, pupal and adult characters in phylogenetic studies. So far, only Costa et al. (1999) has discussed the phylogenetic position of Psephenidae, based on one representative of each subfamily, indicating that only one synapomorphy, flattened larvae, can support the monophyly of the family. This claim is questionable, because their phylogenetic analysis did not include some genera of Elmidae that share this same state (e.g. Fig. 4B, C).
The suprageneric taxonomy of Psephenidae has been confused, mainly because of dissimilarity between adults of subfamilies and incorrect association of immature stages and adults. Members of Eubrianacinae had been placed in the family Dascillidae, until Blackwelder (1930) described the larva of *Eubrianax edwardsii* (LeConte) and assigned it to Psephenidae. *Psephenoides immis*, the first member of Psephenoidinae, was described by Gahan (1914). It was placed in Psephenidae, partly on account of the similar habits of the adults and the great similarity of the larvae of Psephenidae and *Psephenus*. Champion (1920, 1924) transferred the genus to Scirtidae (= Helodidae) because adults of *Psephenoides* are more similar to members of Scirtidae than those of *Psephenus*. Böving (1926, 1929) and Böving & Craighead (1931) transferred *Psephenoides* to Dryopidae because of the similarity of the larvae of *Psephenoides* and *Helichus* (Dryopidae) in that both had anal gills in contrast to ventral gills in *Psephenus*. At that time, larvae of some eubriines had been identified erroneously as *Helichus* by Kellicott (1883). This confusion still existed when Hinton (1939) proposed that Psephenidae should contain three subfamilies: Psepheninae, Psephenoidinae and Eubriinae, based on the comparative anatomy of the larvae, pupae and adults. The first true larva for Eubriinae was recognized when Bertrand (1939) correctly described the life history of *Eubria palustris* Germar. Hinton (1955, 1966) formally included Eubriinae in Psephenidae when discussing the respiratory adaptations of the larvae and pupae. This assignment has been followed by Lawrence & Newton (1995), but other researchers have disagreed. For example, Bertrand (1972) treated Eubriaceae as a subfamily of the Dascillidae, and raised Psephenoidinae and Eubriinae up to the family level – Psephenoididae and Eubriidae. Eubriidae was also adopted by some other researchers, e.g. Brigham (1981).

Crowson (1960) was the first to discuss the phylogenetic position of the Psephenidae. Psephenidae was attributed to the superfamily Dryopoidea (= Byrrhoidea), which was split into two main lineages. Psephenidae, Heteroceridae, Dryopidae, Limnichidae and Elmidae were one lineage united by the synapomorphy of five or six lateral ocelli in larvae. *Eulichas* (Eulichadidae), Ptilodactylidae, Chelonaridae and Euryponogonidae represented a second lineage united by the synapomorphism of the respiratory systems of the immature stages, arguing that Psephenidae had the most primitive respiratory systems of all subfamilies. However, his discussion focused on the autapomorphic respiratory system of each subfamily, which provided no information on the relationships between subfamilies. Thus, when he drew the phylogeny of Psephenidae (Hinton, 1966: fig. 16), the cladogram united all subfamilies. Although all subfamilies were represented in Costa et al.’s (1999) phylogenetic analysis of Byrrhoidea, subfamily relationships within Psephenidae were not discussed.

In this study, we tested monophyly of the family Psephenidae and its subfamilies and clarified the relationships between subfamilies based on adult and immature stages, using most of the known genera.

Materials and methods

Terminology

The terminology for hind wing venation is based on Kukalová-Peck & Lawrence (1993, 2004). Terms for larval structure follow Lee et al. (2001) for Eubriaceae and Lee et al. (2003c) for Psepheninae. However, there are autapomorphic arrays of marginal fringes within Psephenidae. Especially in some eubriine genera, the marginal fringes are highly developed: there are four layers of setae on the outward margin of larvae. These setae are named based on their position. For example, the setae of the most outward layer are called first dorsal setae (= D1), the setae of the following layers are called second dorsal setae (D2) (e.g. Fig. 9J) and third dorsal setae (D3) (e.g. Fig. 9K). The most inner layer of setae (fourth dorsal setae) can be clearly observed in ventral view. Thus, this layer of setae is called ventral setae (VS) (Fig. 9K). Several pairs of long hair-like setae appear in larvae of some genera of Eubriinae, especially in *Ectopia*. The terminology of setae on the dorsum is based on this genus (Fig. 4J).
Selection of taxa

Psephenidae currently comprise 31 genera and approximately 263 species. We have examined adults of 28 genera and approximately 200 species. Excluded from the analysis are *Bertrandia* Pic (Psepheninae), *Falsodrueus* Pic (Eubrini) and *Sinopsephenoides* Yang (Psephenoidinae), which are unknown as larvae and unavailable as adults. Immature stages of species available for the study are listed in Appendix 2. Larvae of three undescribed genera were added to the data matrix for the phylogenetic analysis. Elmidae and Cneoglossidae were chosen as outgroups because they are sister groups to Psephenidae, as proposed by Beutel (1995) and Costa et al. (1999), respectively. Within Elmidae, *Elmis* and *Phanocerus* were chosen as they represent both subfamilies (Elminae and Larainae) and their larvae are flattened, which can provide more information about character polarities. Because the purpose of the study was not to expose the sister-group relationships of Psephenidae, but to root cladograms, few outgroups were selected: Cneoglossidae was designated to the root of the tree based on Beutel’s (1995) phylogenetic analysis of the Elateriformia. Character states shown on the data matrix (Appendix 3) are not hypothetical groundplans, but are from real species.

Character coding and phylogenetic analysis

In total, 143 morphological characters were used (Appendix 3), of which 50 were from adults, 70 from larvae and 23 from pupae. We found seven ontogenetic characters in the Psephenidae, of which five were included in the analysis. Two were excluded because of insufficient material. All characters were analysed under equal weights and treated as nonadditive.

The parsimony analysis was implemented in NONA (Goloboff, 1993), run within WINCLADA (Nixon, 2000). The most-parsimonious trees were discovered by using the search commands ‘rs 0’ and ‘mult 50’. A strict consensus tree was calculated from the most-parsimonious trees. Bremer support (Bremer, 1994) was calculated using NONA, and the search was set to a Bremer support of 5, with a buffer of 4000 trees.

Characters

1. **Male antennae**: (0) filiform (Fig. 1A); (1) moniliform (Fig. 1B); (2) serrate (Fig. 1C); (3) pectinate (Fig. 1D); (4) flabellate (Fig. 1E) [consistency index (CI) = 0.50, retention index (RI) = 0.63].

Moniliform antennae are males in some genera within Psepheninae (*Psephus*, *Psephenops*, genus D) and Eubrini (Sclerocyphon, Tychepsephus). Serrate antennae in males are present in some members of Eubrini (Ectopria, Nipponeubria, Microeubria, Eubria and most species of Macroeubria and Dicranopselaphus). Pectinate antennae appear in the Macroeubria pectinata species group and American members of Dicranopselaphus. This type of antenna is also found in most members of Psephenidae, including Psephenoidinae, Eubriacinae (except *Eubrianax serratus*), some genera within Eubrini (Afroeubria, Granuleubria, Homoeogenus, Schinostethus s.str.). Flabellate antennae, defined as having extremely short antennomeres 3–10, which have long appendages, occur in Schinostethus subgenus Sinopsephenoides, and *Acneas* within Eubrini. Filiform antennae appear only in Mataeopselaphus and Pheneps (both in Psephenidae). In general, the pectinate antenna is uniform, with rami originating from the apices of antennomeres 5–10 except in Eubriacinae. Lee et al. (2001) coded another state for *Odontanax*, *Jaechanax*, *Eubrianax pellucidus*, *E. amamiensis* and *E. manakikikuse*, whose antennae have rami originating from the middle or bases of antennomeres 5–7. However, we excluded this state due to a lack of information (because it is polymorphic in *Odontanax* and *Eubrianax*, it cannot provide phylogenetic information).

2. **Male antennae**: (0) without cup-shaped sensillae; (1) with cup-shaped sensillae (Fig. 2A) (CI = 0.50, RI = 0.87).

Cup-shaped sensillae occur in most genera of Eubrini, except *Sclerocyphon*, *Tychepsephus*, *Afroeubria* and *Granuleubria*.

3. **Male antennae**: (0) without paddle-shaped sensillae; (1) with paddle-shaped sensillae (Fig. 2B) (CI = 0.33, RI = 0).

Paddle-shaped sensillae occur in some genera of Eubrini, including *Afroeubria*, *Granuleubria* and *Nipponeubria*.

4. **Female antennae**: (0) without appendages; (1) with short appendages (Fig. 1G) (CI = 0.50, RI = 0).

Female antennae with short appendages only occur in two genera of Psephenoidinae: *Afropsephenoides* and *Xylopesphenoidea*.

5. **Distance between eyes in males**: (0) equal to or greater than the diameter of each compound eye (Fig. 2C); (1) smaller than the diameter of each compound eye (Fig. 2D) (CI = 0.25, RI = 0.40).

The eyes of males in some genera of Eubrini (*Granuleubria* and *Ectopria*) and Psephenoidinae (*Neopsephenoides*, *Afropsephenoides*, *Xylopesphenoidea*) are larger than in females, which are attributed to state 1. It is polymorphic in *Dicranopselaphus*.

6. **Antennal socket**: (0) very weakly convex or flat; (1) strongly convex (CI = 0.50, RI = 0.50).

The strongly convex antennal socket occurs in most genera within Psephenoidinae, except *Psephenoides*.

7. **Clypeus**: (0) smooth (Fig. 2C); (1) raised (Fig. 2D) (CI = 1.00, RI = 1.00).

The raised clypeus occurs in most Psephenidae, except *Psepheninae*.

© 2007 The Authors
Fig. 1. Adult features used in the phylogenetic analysis. A–G, Antenna; H, I, elytra folding and scutellum; J, K, mandible, dorsal view; L–O, maxillary palpus; P, Q, head, ventral view; R, S, pronotum, scutellum and base of elytra; T, U, mesoventrite and metaventrite; V, base of metaventrite and metacoxae; W, wing folding. A, Mataeopsephus taiwanicus; B, Psephenus herricki; C, Macroeubria lewisi; D, Macroeubria pectinata; E, Jaechanax illiesi; F, Schinostethus (Sundodrupeus) albosulcus; G, Xylopsephenoides gihongi; H, Psephenoides subopacus; I, Xylopsephenoides gihongi; J, Phanocerus clavicornis; K, Sclerocyphon minimus; L, Mataeopsephus japonicus; M, Granuleubria satoi; N, Eubria palustris; O, Afroebria monodi; P, Phanocerus clavicornis; Q, Ectopria nervosa; R, Sclerocyphon minimus; S, Afroebianax ferdyi; T, Ectopria nervosa; U, Psephenoides subopacus; V, Neopsephenoides nanus. E = compound eye.
8. Clypeus: (0) normal (Fig. 2D); (1) apically lengthened (Fig. 2C) (CI = 0.50, RI = 0).

The apomorphic state appears in Mataeopsephus and genus D. The clypeus is apically lengthened and recurved.

9. Frontoclypeal suture: (0) present; (1) absent (CI = 1.00, RI = 1.00).

The frontoclypeal suture is absent in all members of Psephenidae, except Mataeopsephus esakii.

10. Mandible: (0) well developed (Fig. 1J); (1) reduced (Fig. 1K) (CI = 1.00, RI = 1.00).

The mandibles lacking the mola and prostheca are weakly sclerotized and smaller in Psephenidae. Crowson (1978) supposed that adults of Psephenidae are short-lived based on the reduced mandibles. Reduced mandibles are also found in Cneoglossidae (Costa et al., 1999).

11. Labrum: (0) partly exposed; (1) concealed under clypeus (CI = 0.25, RI = 0.57).

In Psephenoidinae and some genera of Eubriinae (Afroeubria, Eubria, Macroeubria and Dicranopselaphus), the labrum is concealed under the clypeus.

12. Apices of maxillary and labial palpi: (0) truncate or rounded (Fig. 1L); (1) bifurcate (Fig. 1M); (2) apically tapering (Fig. 1N); (3) with several processes (Fig. 1O) (CI = 0.75, RI = 0.75).

The truncate or rounded apices of maxillary and labial palpi occur in Eubrianacinae and Psepheninae, and some genera of Eubriinae (Ectopria, Homoeogenus, Nipponeubria and Acneus), and some species of Cneoglossa, Macroeubria and Dicranopselaphus. The bifurcate apices of palpi occur in Afroeubria, Psephenoides and Afropsephenoides, and some species of Cneoglossa, Macroeubria, Dicranopselaphus and Neopsephenoides. The pointed apices occur in Afroeubria, Xylopsephenoides and some species of Neopsephenoides. The apices with several processes only occur in Eubria.

13. Gula and postgena in ventral view: (0) gula relatively narrower than postgena (Fig. 1P); (1) gula as wide as postgena (Fig. 1Q) (CI = 1.00, RI = 1.00).

The narrow gula and wide postgena occur in outgroups and Psepheninae. The wide gula and narrow postgena occur in other subfamilies of Psephenidae.

14. Lateral margins of pronotum: (0) serrate (Fig. 1R); (1) smooth (Fig. 1S) (CI = 0.50, RI = 0).

The serrate lateral margins of the pronotum occur in Elmis, some species of Sclerocyphon, and Tychepsephus.
15. **Basal rim of pronotum:** (0) smooth (Fig. 1S); (1) crenulate (Fig. 1R) (CI = 0.50, RI = 0.90).

The crenulate basal rim of the pronotum occurs in most Eubriinae, except *Afroeubria* and *Eubria*. The basal rims of the pronota of *Mataeopselaphus chinensis* and *M. dentatus* are also crenulate.

16. **Apical margin of pronotum:** (0) moderately emarginated (Fig. 1R); (1) straight; (2) arcuate (Fig. 1S) (CI = 0.50, RI = 0.75).

The concave apical margin of the pronotum is present in *Elmis* (Elmidae), *Sclerocyphon* and *Tychepepselaphus* (both in Eubriinae). When the apical margin of the pronotum is rounded, the entire head is concealed by the pronotum. The rounded pronotum occurs in *Afroeubria*, *Neopsephenoides* and Eubrianacinae.

17. **Basal rims of scutellum and elytra:** (0) smooth (Fig. 1S); (1) crenulate (Fig. 1R) (CI = 0.33, RI = 0.77).

The state distribution is consistent with that of character 15, except *Microeubria* (Eubriinae), which have smooth basal rims of the scutellum and elytra but a crenulate rim of the pronotum. In addition, *Mataeopselaphus chinensis* and *M. dentatus* have the same features as *Microeubria*.

18. **Scutellum:** (0) without notches at basal margin (Fig. 1H); (1) with a notch at basal margin (Fig. 1I) (CI = 1.00, RI = 1.00).

The basal margin of the scutellum with a notch appears in Neopsephenoides and Xylopesphenoides.

19. **Connection of both elytra in males:** (0) immediately behind scutellum (Fig. 1H); (1) between metanotal grooves (Fig. 1I); (2) without connection (Fig. 1W) (CI = 1.00, RI = 1.00).

The connection of both elytra folding between metanotal grooves in males appears in Neopsephenoides and Xylopesphenoides.

20. **Proventrite:** (0) smooth; (1) a pair of longitudinal ridges near prosternal process (CI = 0.33, RI = 0).

A pair of longitudinal ridges near the prosternal process is present in *Acneus* and *Nipponeubria*.

21. **Apex of mesoventrite:** (0) truncate or emarginate (Fig. 1T); (1) tapering (Fig. 1U) (CI = 0.33, RI = 0.33).

22. **Median longitudinal sulcus on mesoventrite:** (0) absent (Fig. 1T); (1) present (Fig. 1U) (CI = 0.12, RI = 0.46).

23. **Connection between prosternal process and mesoventral cavity:** (0) present (Fig. 1T); (1) absent (Fig. 1U) (CI = 0.50, RI = 0.90).

The reduced prosternal process associated with the absence of the mesosternal cavity is found Eubrianacinae, Psephenoidinae and *Afroeubria* (Eubriinae).

24. **Transverse suture of metaventrite:** (0) well developed (Fig. 1U, V); (1) vestigial (Fig. 1T); (2) reduced (CI = 0.50, RI = 0.84).

The transverse suture of the metaventrite is vestigial in Psepheninae and Eubriinae, except *Sclerocyphon* and *Tychepepselaphus*, and reduced completely in Cneoglossinae.

25. **Abdomen:** (0) five ventrites in both sexes; (1) seven ventrites in males, six ventrites in females (CI = 1.00, RI = 1.00).

Males with seven abdominal ventrites and females with six abdominal ventrites characterize Psepheninae.

26. **Apical margins of abdominal ventrites II–IV:** (0) smooth (Fig. 2E); (1) serrate (Fig. 2F) (CI = 0.33, RI = 0.33).

Serrate apical margins of abdominal ventrites II–IV appear in some genera of Eubriinae (*Sclerocyphon, Granuleubria, Ectopria* and *Eubria*).

27. **Metacoxal suture:** (0) present (Fig. 1T, U); (1) absent (Fig. 1V) (CI = 1.00, RI = 1.00).

The metacoxal suture is absent in Neopsephenoides and Xyllopesphenoides.

28. **Femur:** (0) without groove; (1) with groove for reception of tibia (CI = 0.25, RI = 0.72).

Femora with grooves for the reception of tibiae appear in *Phanocerus*, Eubriinae and Psepheninae (except Psepheninae).

29. **Groove on femur:** (0) both ridges at same height (Fig. 3E); (1) both ridges at different heights (Fig. 3F) (CI = 0.33, RI = 0.33).

The external ridge is higher than internal one in some genera of Eubriinae (*Eubria, Schinostethus, Macroeubria* and *Microeubria*).

30. **Apical spurs of tibiae:** (0) present; (1) absent (CI = 1.00, RI = 1.00).

Apical spurs of the tibiae are absent in Psephenoidinae.

31. **Formula of apical spurs of tibia in males:** (0) 2-2-2; (1) 2-1-1 (CI = 1.00, RI = 1.00).

The reduced number of apical spurs appears in Eubrianacinae, except *Jinbrianax*. It is inapplicable to Psephenoidinae, as apical spurs are completely absent.

32. **Apical spurs on tibiae in males:** (0) both the same size; (1) one smaller on middle and hind tibiae (CI = 0.50, RI = 0.50).
Different sizes of apical spurs on the tibiae appear in males of most genera within Psepheninae (Pheneps, Psephenops and genus D).

33. **Formula of apical spurs of tibiae in females:** (0) 2-2-2; (1) 2-2-1; (2) 2-1-1 (CI = 1.00, RI = 1.00).

This character transformation is new to Lee et al. (2003a). Only one spur on each hind tibia appears in Odontanax and Jaechanax. One spur on each middle and hind tibia appears in Afrobrianax and Eubrianax.

34. **Ventral teeth of tibiae:** (0) absent (Fig. 3F); (1) present (Fig. 3E) (CI = 0.25, RI = 0).

Ventral teeth on tibiae appear in most genera of Psepheninae (Mataeopsephus, Psephenops and genus D).

35. **Tarsomeres I and II:** (0) slender (Fig. 3A); (1) dilated on front and middle legs in males (Fig. 3B–D) (CI = 0.50, RI = 0.50).

Dilated tarsomeres I and II on front and middle legs appear in Pheneps, Psephenops and genus D.

36. **Ventral laminar expansions on tarsomeres I and II in males:** (0) absent (Fig. 3A, B); (1) present (Fig. 3C, D) (CI = 1.00, RI = 1.00).

Ventral lobes on tarsomeres I and II in males appear in Psephenops and genus D.

37. **Claws:** (0) without angular bases (Fig. 2G, H); (1) with angular bases (Fig. 2I) (CI = 0.14, RI = 0.33).

The hardened and expanded bases of tarsi appear in some genera of Eubriinae, including Granuleubria, Ectopria, Homoeogenus, Acneus, Schinostethus, Macroeubria and Dicranopselaphus, as well as Mubrianax and Afrobrianax within Eubrianacinae.

38. **Anterior claw in males:** (0) simple (Fig. 2G); (1) one tooth at apex (Fig. 2H, I); (2) one tooth at middle (CI = 0.20, RI = 0.33).

One bifurcate claw of both claws in males appears in Granuleubria, Ectopria, Homoeogenus, Acneus, Eubria, Schinostethus, Macroeubria, Dicranopselaphus, Neopsephenoides and Afrosephenoides. Those of Homoeogenus are diverse. There is a small tooth on each claw or no teeth at both claws in some genera of Eubriinae (H. elongatum). Thus, Homoeogenus cannot be coded for characters 38 and 39.

39. **Posterior claws (males):** (0) simple (Fig. 2G, H); (1) one tooth at apex of claw (Fig. 2I); (2) one tooth at middle of claw (CI = 0.20, RI = 0.50).

The state distribution is consistent with the preceding character, except for Acneus and Eubria, which have one bifurcate claw and one simple claw.

40. **Claws (females):** (0) simple; (1) bifurcate near apex (CI = 0.50, RI = 0.50).

The bifurcate claws in females occur in most genera of Psephenidinae, except Psephenoides.

41. **Pulvilli on tarsal claws:** (0) absent; (1) present (CI = 0.50, RI = 0).

The apomorphic condition appears in Eubrianax and Jaechanax (both in Eubrianacinae). Costa et al. (1999; character 24) implied that the apomorphic conditions also appeared in Psephenidinae. Actually, none of the species of this subfamily has pulvilli.

42. **Aedeagus:** (0) fibula absent (Fig. 3K, N–P); (1) fibula present, V-shaped (Fig. 3L); (2) fibula with two apical processes (Fig. 3M) (CI = 0.28, RI = 0.58).

The V-shaped fibula appears in Sclerocyphon, Tychepsplus, Afroeubria, Gramuleubria, Ectopria and some species of Macroebria. The apically bifurcate fibula occurs in Nipponeubria, Acneus, Eubria and some species of Macroebria.

43. **One pair of slender auxiliary sclerites articulated with penis:** (0) absent; (1) present (Fig. 3N) (CI = 0.50, RI = 0).

The auxiliary sclerites appear in Psephenoides and Neopsephenoides.

44. **Apices of parameres:** (0) rounded; (1) recurved, hook-like (Fig. 3O) (CI = 0.50, RI = 0.50).

The recurved and hook-like apices of parameres appear in some genera of Eubrianacinae (Mubrianax, Afrobrianax and Eubrianax).

45. **Apices of parameres:** (0) exposed; (1) covered by a rounded sclerite (Fig. 3O) (CI = 1.00, RI = 1.00).

The state distribution is the same as with the preceding character, except in Mubrianax, whose parameres have hook-like apices not covered by a rounded sclerite.

46. **Mesal margin of each paramere:** (0) smooth; (1) with one process (Fig. 3P) (CI = 0.50, RI = 0).

The presence of a process on the mesal margin of each paramere occurs in Jinbrianax and Odontanax.

47. **Basal piece:** (0) asymmetric; (1) symmetric (Fig. 3K) (CI = 1.00, RI = 1.00).

The pleiomorphic condition only appears in Elmidae. The asymmetric aedeagus is shared with the elmid–dryopid line (Crowson, 1978), including Elmidae, Dryopidae, Lulurothidae, Limnichidae and Heteroceridae.

48. **CuP of hind wing:** (0) ending with AA veins (Fig. 3G, H); (1) intact (Fig. 3I); (2) veins absent (Fig. 3J) (CI = 0.66, RI = 0.75).

The presence of only vein CuP occurs in Mataeopsephus and Pheneps. All veins are reduced in Psephenidinae. Such an autapomorphy in Psephenidinae is applied to characters 48–50.

49. **AA3 + 4 of hind wing:** (0) forked (Fig. 3G); (1) not forked (Fig. 3H); (2) veins reduced (Fig. 3I, J) (CI = 0.33, RI = 0.71).

The forked vein AA3+4 occurs in all outgroups, Sclerocyphon, Tychepsplus, Schinostethus, Eubrianacinae and some
species of _Psephenus_. The unforked vein AA\textsubscript{3,4} occurs in the remaining eubrines and some species of _Psephenus_. The vein is reduced in _Mataeopsephus_, _Phanocerus_ and _Psephenoidinae_.

50. **Radial cell of hind wing**: (0) open (Fig. 3I); (1) closed (Fig. 3G, H); (2) veins absent (Fig. 3J) (CI = 0.66, RI = 0.80).

The open radial cell occurs in _Phanocerus_, _Elmis_ and _Jinbrianax_.

Larva

51. **Antennae**: (0) short, antennomere I smaller than antennomere II; (1) moderately long, antennomere I subequal or longer than antennomere II (CI = 0.25, RI = 0.80).

Costa _et al._ (1999) coded larval antennae into two discrete states: moderately long and very short. They are not objectively coded because of insufficient comparisons. Costa _et al._ (1999) supposed that only Eubriinae had very short antennae. If short antennae indicate the relatively smaller first antennomere, their assumption is incorrect because several exceptions exist (_Sclerocyphon_, _Tychecephalus_, _Afroeubria_, _Schinostethus_ and _Dianropselaphus_). This character is polymorphic in _Sclerocyphon_ (Eubriinae).

52. **Number of segments in maxillary palpi**: (0) four-segmented; (1) three-segmented; (2) two-segmented (CI = 0.66, RI = 0.93).

Three-segmented maxillary palpi occur in most genera in Eubriinae, except _Sclerocyphon_ and _Tychecephalus_, and genus _A_.

53. **Number of segments in labial palpi**: (0) three-segmented; (1) two-segmented; (2) one-segmented (CI = 0.66, RI = 0.93).

The state distribution is the same as with the preceding character.

54. **Mandible**: (0) with four apical teeth (1) without apical teeth (CI = 0.28, RI = 0.44).

Unlike the outgroups, ingroups whose mandibles have four apical teeth are somehow correlated with a xylophagous or saprophagous lifestyle. For example, _Macroeubria_ (Eubriinae), _Xylopsephenoidea_ (Psephenoidinae), _Mabrianax_ and _Jaechanax_ (Eubrianae) are xylophagous; _Homoeogenus_ are saprophagous.

55. **Body form**: (0) cylindrical (Fig. 4A); (1) elongate and flattened (e.g. Figs 4B, E, H, J, 5H, I); (2) broadly oval and flattened (e.g. Figs 4D, F, G, 5D, E) (CI = 0.25, RI = 0.60).

Costa _et al._ (1999) assumed that the flattened body shape is autapomorphic for Psephenidae. However, some members of both subfamilies within Elmidae are also flattened and a division into three states is required to distinguish representatives of Psephenidae from others. The broadly oval and flattened body form occurs in Psepheninae, most genera of Psephenoididae (except _Xylopsephenoidea_ and Eubrianae (except _Mabrianax_ and _Jaechanax_), and some genera of Eubriinae (_Tychecephalus_, _Afroeubria_, _Schinostethus_ and _Dianropselaphus_). This character is polymorphic in _Sclerocyphon_ (Eubriinae).

56. **Medial suture**: (0) well developed, reaching abdominal segment VII (Figs 4D–G, 6); (1) abbreviated on segment VII–IX (CI = 0.25, RI = 0.75).

The medial suture is reduced on abdominal tergites VII–IX in _Cneoglossa_, _Phanocerus_, Eubrianae and most genera of Eubriinae (except _Sclerocyphon_, _Tychecephalus_ and _Afroeubria_).

57. **Cuticular beads on dorsal surface**: (0) present; (1) reduced (CI = 0.12, RI = 0.41).

Cuticular beads on the dorsal surface are reduced in some genera of Eubriinae (including _Homoeogenus_, _Aceneus_, _Schinostethus_, _Macroeubria_, _Microeubria_ and _Dianropselaphus_, genera _A_ and _C_) and most psephenoidines (except _Xylopsephenoidea_).

58. **Apical margins of prothorax**: (0) emarginate or truncate, head exposed (Fig. 4A–C); (1) anteriorly produced, head concealed (Figs 4D–L, 5–7) (CI = 1.00, RI = 1.00).

The anteriorly produced prothorax characterizes the family Psephenidae.

59. **D1 (hair-like) setae on outward margins of thoracic and abdominal paratergites I–VII segments**: (0) absent; (1) present (CI = 0.25, RI = 0.70).

Macroeubria and _Microeubria_ have one layer of dorsal setae on paratergites. Those of _Macroeubria_ should be regarded as D2, and those of _Microeubria_ as D1 when homologizing those of genus _C_. The D1 setae are present in eubrianae, eubrines (except _Macroeubria_ and _Dianropselaphus_), and two genera of Psephenoidinae (_Afropsephenoides_ and _Xylopsephenoidea_). This character is polymorphic in _Sclerocyphon_ (Eubriinae), _Psephenoidinae_ and _Mataeopsephus_ (Psepheninae).

60. **D1 hair-like setae on lateral margin of abdominal paratergites VIII**: (0) absent; (1) present (CI = 0.25, RI = 0.66).

© 2007 The Authors
This character is inapplicable to Cneoglossidae, Psephenoidinae, and Psepheninae without abdominal paratergites VIII. The state distribution is consistent with character 59, except for some genera of Eubriinae (Nipponeubria, Acneus, Eubria, Schinostethus, genus B), whose D1 setae appear on the outward margins of thoracic and abdominal paratergites I–VII, but are reduced on lateral margins of abdominal paratergites VIII.

61. **D1 hair-like setae on outward margin of abdominal tergite IX:** (0) absent; (1) all over lateral and apical margin (Figs 10E, F, 11A); (2) only present on lateral margins (Figs 10C, 11B–D) (CI = 0.28, RI = 0.61).

The state distribution is consistent with that of character 59, except that Ectopia, Nipponeubria, Acneus and Schinostethus have D1 setae confined to lateral margins of abdominal tergite IX, and Afroeubria, Microeubria, genera B and C lack D1 setae on abdominal tergite IX.

62. **D1 setae on abdominal paratergites I–VII:** (0) all over outer margins of paratergites (Fig. 8F); (1) confined to areas near apices of paratergites (Fig. 9A, B, E, F, H, J, L, P); (2) reduced into one pair (Fig. 9T–V) (CI = 0.50, RI = 0.80).

This character is inapplicable to Cneoglossa, Phanocerus, Elmis, Dicranopselaphus and Psepheninae due to the lack of D1 setae. D1 setae are restricted to near the apex (most eubriines, including Afroeubria, Granuleubria, Ectopia, Homoeogenus, Nipponeubria, Acneus, Eubria, Schinostethus and genus B), or even reduced to one pair on the outer margin of each paratergite (Microeubria and genus C).

63. **D2 setae:** (0) without basal pieces (e.g. Fig. 8A, C, H, I, O, Q); (1) with basal pieces (CI = 0.25, RI = 0.62).

The D2 setae with basal pieces occur in Macroeubria, genera A and C, and Eubriinae.

64. **Basal pieces of marginal peg setae:** (0) without lateral teeth (Figs 8L, 9N, V); (1) with lateral teeth on one side; (2) with lateral teeth on both sides (Fig. 8E) (CI = 1.00, RI = 1.00).

This character is inapplicable to those taxa without basal pieces, which are coded as zero in the preceding character. Teeth on one side of the basal piece occur only in Jinbrianax. Teeth on both sides of the basal piece occur in the remaining genera of Eubriinae.

65. **D2 setae on apical margins of abdominal paratergites VIII:** (0) present; (1) absent (CI = 0.50, RI = 0.66).

This character is inapplicable for those taxa without abdominal paratergite VIII, as in character 60. D2 setae (on apical margins of abdominal paratergites VIII) are absent in Afroeubria, Schinostethus, Microeubria, Dicranopselaphus, and genus C.

66. **D2 setae on outward margin of prothorax:** (0) ramose; (1) hair-like (CI = 0.20, RI = 0.33).

This character is inapplicable to Microeubria due to the lack of D2 setae and Cneoglossidae due to the absence of setae on the outer margin of the prothorax. Ramose D2 setae on the outward margin of the prothorax occur in Elmis and Granuleubria, Ectopia, Homoeogenus, Nipponeubria, Acneus and Dicranopselaphus.

67. **Hair-like D2 setae on outward margin of prothorax:** (0) basal halves sclerotized; (1) without sclerotization (CI = 0.25, RI = 0.70).

This character is inapplicable to those taxa with ramose D2 setae, as mentioned in the preceding character. Un sclerotized D2 setae on the outward margin of the pronotum occur in Phanocerus, Eubria, Schinostethus, Macroeubria, genera A, B and C, Eubriinae and most Psepheninae (except Xylocephenoides).

68. **D2 setae on outward margins of all paratergites except for prothorax, abdominal paratergites VIII and tergite IX:** (0) ramose (Figs 8Q, 9A, B, E, G, I, J, L, S); (1) hair-like (Figs 8A, C, E, H, I, L, O, 9N, Q, V) (CI = 0.33, RI = 0.75).

The state distribution is consistent with that of character 68, except in Eubria and genus B (both in Eubriinae). In both genera, D2 setae are hair-like and unsclerotized on the prothorax, but they are ramose on other segments. D2 setae of Phanocerus and Schinostethus should be coded as state 1, although the D2 setae are covered with dense hairs.

69. **Hair-like D2 setae on lateral margins of all paratergites except for prothorax, abdominal paratergites VIII and tergite IX:** (0) basal halves sclerotized (Fig. 8A, C, H, I); (1) without sclerotization (Figs 8E, L, O, 9N, Q, V) (CI = 0.25, RI = 0.70).

The state distribution is consistent with that of character 67, except that it is inapplicable to Eubria and genus B due to the ramose D2.

70. **Distribution of D2 setae on outward margins of paratergites:** (0) overlapping with D1 setae; (1) separated from D1 setae (Fig. 9A, B, E, J) (CI = 0.66, RI = 0.66).

This character is inapplicable to those genera with only one layer of both D1 and D2 setae, including Elmidae, Macroeubria, Microeubria and Dicranopselaphus. The separation between D2 and D1 setae on pleurites occurs in some genera within Eubriinae, including Granuleubria, Ectopia, Homoeogenus and Eubria.

71. **D2 setae on lateral margins of abdominal tergite IX:** (0) ramose (Figs 10A, B, E, 11B–D); (1) simple (Fig. 10C, D, F); (2) absent (CI = 0.28, RI = 0.44).

The state distribution is consistent with character 68, except that Granuleubria has ramose D2 setae on paratergites and flattened D2 setae on the lateral margins of abdominal tergite IX, and Afroeubria has hair-like D2 setae on paratergites and ramose D2 setae on lateral margins of abdominal tergite IX. Although D2 setae of Elmis look like hairs, they are apically bifurcate.
72. D2 setae on apical margin of abdominal tergite IX: (0) ramose (Figs 10A, 11B); (1) simple (Fig. 10B, C, F); (2) absent (CI = 0.28, RI = 0.37).

The state distribution is consistent with the preceding character, except that Ectopia have flattened D2 setae; Homoeogenus, Nipponeuria, Eubria, Schinostethus, Macroeuria and Microeuria have no D2 setae.

73. Simple D2 setae on apical margin of abdominal tergite IX: (0) shorter than those on paratergites (Fig. 10F); (1) as long as those on paratergites (CI = 0.33, RI = 0.66).

This character is inapplicable to those genera without D2 setae or with ramose D2 setae (cf. character 72). The shorter simple D2 setae occur in Phanocerus, Granuleubria, Ectopia and Psephenoidinae.

74. D2 setae on anterior margins of all paratergites: (0) present on entire margin (e.g. Fig. 9A, B); (1) present from basal one-third or middle (Fig. 9E, G, I, N, Q, V) (CI = 0.25, RI = 0.40).

The pleisomorphic condition occurs in Elmidae, Granuleubria, Extopria, Eubria and genus A.

75. D3 (flattened) setae on anterior margins of paratergites except for abdominal paratergites VIII and tergite IX: (0) absent; (1) present (Fig. 9D, F, H, K, Q) (CI = 1.00, RI = 1.00).

D3 setae occur in most genera of Eubriinae, except Sclerocyphon, Tychepsephus, Afroeubria, Granuleubria, Ectopia and genus A.

76. D3 setae: (0) small (Fig. 9F, H, K); (1) well developed (Fig. 9D, Q) (CI = 0.50, RI = 0.66).

This character is inapplicable to those taxa having no D3 setae, which have the plesiomorphic condition of the preceding character. The well-developed D3 setae may be correlated with more slender paratergites, which occur in Homoeogenus, Schinostethus, Macroeuria, Microeuria, Dicranopselaphus and genus C.

77. D3 (flattened) setae on lateral margin of abdominal tergite IX: (0) absent; (1) present (CI = 0.50, RI 0.85).

The state distribution is consistent with that of character 75, except that Homoeogenus and Dicranopselaphus lack D3 setae on abdominal tergite IX.

78. VS on outer margin of all paratergites: (0) present; (1) absent (CI = 0.50, RI = 0).

VS are absent in Cneoglossa and genus C. They are polymorphic in Homoeogenus. Characters 79–81 are inapplicable to those taxa having no VS.

79. VS on outer margins of thoracic paratergites: (0) lanceolate; (1) ramose; (2) hair-like setae (CI = 0.25, RI = 0.53).

Lanceolate processes are located on the outer margins of paratergites ventrally in psephenoidines; additionally, some hair-like setae appear (Fig. 8D). Thus, the VS of Psephenoidines are hair-like and lanceolate. Most eubriacines have lanceolate VS (Fig. 8E, F). However, VS in early-instar Juebrianax are widened and with a number of longitudinal veins (Fig. 8G). They are apically ramose in the late-instar larvae. This should be coded as states 0 and 1 simultaneously.

80. VS on anterior margins of abdominal paratergites I–VIII: (0) lanceolate (Figs 8I, 9C, R, T, U); (1) apically ramose (Figs 8B, N, Q, 9K, M, S); (2) hair-like setae (Figs 8H, 9O) (CI = 0.28, RI = 0.61).

The state distribution is consistent with the preceding character, except for Eubria and genus A. Both genera have hair-like VS on the thoracic paratergites (Fig. 8M) and apically ramose VS on the abdominal paratergites (Fig. 8N).

81. VS of Phanocerus (Elmidae) are ring-like (Fig. 8P). This should be coded as state 2 because they can be the curved hair-like setae.

82. Setae on posterior margins of all but last two abdominal paratergites (SPP): (0) similar to D2 setae (Fig. 8I, L, Q); (1) different from D2 setae, wide and flattened (Fig. 8A, E, H, O); (2) different from D2 setae, elongate and flattened (Fig. 8D); (3) absent (CI = 0.60, RI = 0.86).

SPP of Elmis, Sclerocyphon, Tychepsephus and genus A are similar to D2 setae, although they are a little different in shape. SPP of Eubriacinae, Psepheninae, Phanocerus and Afroeubria differ from D2 setae by the wide and flattened shape. The remaining genera of Eubriinae have long, flattened SPP. The SPP of Psephenoides, Neopsephenoides and Afrosephechnoides are elongate, but they also look like the widened and flattened setae due to bearing numerous branches (Fig. 8C) and thus should be coded as states 1 and 2. The SPP of Xylopsephenoides are similar to those of other psephenoidines, but without branches (Fig. 8D). They should be coded as state 2. Cneoglossa lacks SPP.

83. Mid-dorsal pronotal plate: (0) absent; (1) incomplete (Fig. 7E, F); (2) well developed (Fig. 7C) (CI = 1.00, RI = 1.00).

The mid-dorsal pronotal plate is located along the medial suture, halfway between the outward margin of the pronotum. The incomplete condition has only the anterior half of the mid-dorsal pronotal plate visible. This condition occurs in Eubriaxia pellucidus, E. amaniensis, Jaechanax and Mubrianax. In the latter two genera, the plate is connected with the periocellar sulci. The mid-dorsal pronotal plate appears in Afroebrianax and some species of Eubriaxia (cf. Lee et al., 2001: character 10).
84. Dividing sulci at posterior plates on pronotum: (0) absent; (1) present (Fig. 7D–F) (CI = 1.00, RI = 1.00).

This character applies only to Psepheninae and Eubriancinae, which have posterior plates on the pronotum. The dividing sulci occur in Odontanax, Jaechanax and Mubrianax. It is polymorphic for Jinbrianax and Eubrianax (cf. Lee et al., 2001: character 12).

85. Periocellar sulci: (0) absent; (1) present, not connected with anterior half of mid-dorsal pronotal plate (Fig. 7A, B); (2) present, connected with anterior half of mid-dorsal pronotal plate (Fig. 7E, F) (CI = 1.00, RI = 1.00).

The periocellar sulci are separated from the mid-dorsal pronotal plate in Jinbrianax and some species of Eubrianax. The combination of the periocellar sulci and the anterior half of the pronotal plate occurs in Jaechanax and Mubrianax.

86. Posterior plates on thoracic tergites: (0) absent; (1) present, not segmented on meso- and metathorax (Fig. 6A, B); (2) present, segmented on meso- and metathorax (Fig. 7) (CI = 1.00, RI = 1.00).

The posterior plates on thoracic tergites appear in Eubriancinae and Psepheninae (Figs 6B, 7A). Division of the posterior plates occurs in Eubrianacinae.

87. Posterior plates on abdominal tergites I–III: (0) absent; (1) present (Fig. 7F) (CI = 1.00, RI = 1.00).

The posterior plates on abdominal tergites I–III appear in Odontanax, Jaechanax, Mubrianax and some species of Eubrianax (Fig. 7B, D–F).

88. Posterior plates on abdominal paratergites I–V: (0) absent; (1) present (Fig. 7E) (CI = 0.50, RI = 0).

The state distribution is consistent with the preceding character, except for Jaechanax, whose posterior plates occur only on abdominal tergites I–III (Fig. 7B, D, E).

89. Costal lines: (0) absent; (1) present (Figs 6A, 7D) (CI = 0.50, RI = 0.88).

Costal lines occur in Eubrianacinae (except Jinbrianax) and Psepheninae (Figs 6A, B, 7B–F).

90. Tergopleural sutures: (0) absent; (1) present, including prothorax but excluding abdominal tergite VIII; discontinuous between segments (Fig. 6B); (2) present, excluding pronotum but including abdominal tergites VIII; continuous between segments (Fig. 7C) (CI = 1.00, RI = 1.00).

Tergopleural sutures occur in Psepheninae and Eubriancinae. They appear between the prothorax and abdominal tergites VII in Psepheninae (Fig. 6A, B), but are discontinuous between segments. In Eubrianacinae, they appear continuous between the mesothorax and abdominal tergites VIII (Fig. 7).

91. Sulci 1 on pronotum: (0) absent; (1) present (Figs 4G, 5D, G, 6B, 7A) (CI = 0.20, RI = 0.50).

Sulci 1 were first found in Jinbrianax (Eubrianacinae), which Lee et al. (1999c) termed as ‘midpronotal longitudinal sulci’. However, these sulci have been found in Psepheninae and some members of Eubriinae (Afroebria, Schinostethus and genus B), especially for Psepheninae, in which a similar structure is also present at meso- and metanota.

92. Sulci 2 on meso- and metanota: (0) absent; (1) present (Fig. 6B) (CI = 1.00, RI = 1.00).

An additional pair of sulci (sulci 2) appears on the meso- and metanota in Psepheninae (Fig. 6A, B).

93. Functional spiracles on abdominal segments I–VII: (0) present (Fig. 4A, B); (1) absent (CI = 1.00, RI = 1.00).

The absence of functional spiracles on abdominal segments I–VII characterizes Psephenidae.

94. Functional spiracles on abdominal segment VIII of earlier-instar larvae: (0) absent; (1) present (Figs 4G, 6B, 7B) (CI = 0.33, RI = 0.71).

Functional spiracles on young larvae appear in most psephenids, except Sclerocyphon, Tychepephus and Psephenoidinae. Lee & Yang (2002) assumed the spiracles of Microeubria on the eighth abdominal segment to be reduced due to a lack of spiracular brushes. However, this hypothesis is incorrect, as connecting trachea and apices of pleurites can be observed.

95. Functional spiracles on abdominal segment VIII of last-instar larvae: (0) present; (1) absent (CI = 1.00, RI = 1.00).

This is an ontogenetic character of the preceding character. The state distribution is consistent with the preceding character, except Elmidae, Sclerocyphon, Tychepephus (both in Eubriinae). Larvae of these taxa have functional spiracles only in the last instar. Other eubriines, Psepheninae and Eubriancinae have functional spiracles throughout the entire larval stage. Larvae of Psephenoidinae have lost spiracles throughout the entire larval stage.

96. Position of functional spiracles on abdominal segment VIII: (0) inside tergites (Fig. 4B); (1) near base of paratergites (Fig. 4F, H, 7B); (2) at apices of paratergites (Fig. 4I) (CI = 0.60, RI = 0.90).

Although the spiracles of Eubriancinae are inside the segment, they are near the bases of paratergites. Spiracles are located at the apices of abdominal paratergites VIII in Psepheninae: the paratergites are so short that the position of spiracles is the same as those at the bases of paratergites (such as Sclerocyphon, Tychepephus and genus A). Thus, this character is coded as polymorphic (states 1 and 2) for Psepheninae. Spiracles of most eubriines (except Sclerocyphon, Tychepephus and genus A) are located on the apices of paratergites VIII.

97. Position of functional spiracles on abdominal segment VIII: (0) inside segment (Fig. 4B); (1) at margin of segment (Fig. 4F) (CI = 0.50, RI = 0.87).
Character 96 and 97 are inapplicable to Psephenoidinae, as they have no spiracles. Spiracles on abdominal segment VIII in Eubriinae and Psepheninae are located at the margins.

98. **Spiracular brush of earlier-instar larvae**: (0) absent; (1) present (CI = 0.20, RI = 0.73).

Spiracular brushes in earlier-instar larvae are present in Psepheninae, most eubriines (except *Sclerocyphon*, *Tychepsephus* and *Sclerocyphon* preceding character with the exception of *Psepheninae*, most eubriines (except *Sclerocyphon*, *Tychepsephus* and *Sclerocyphon* preceding character with the exception of *Psepheninae*). Spiracles in mature larvae of *Sclerocyphon* and *Tychepsephus* are associated with the presence of spiracular brushes.

99. **Spiracular brush of last-instar larvae**: (0) absent; (1) present (CI = 0.25, RI = 0.76).

This is an ontogenetic character consistent with the preceding character with the exception of *Sclerocyphon* and *Tychepsephus*. Spiracles in mature larvae of *Sclerocyphon* and *Tychepsephus* are associated with the presence of spiracular brushes.

100. **Distribution of spiracular brush setae**: (0) all along the lateral margin of abdominal tergite IX; (1) a cluster of setae (Fig. 16A) (CI = 1.00, RI = 1.00).

Spiracular brushes are arranged as one row along the lateral margin in Psepheninae.

101. **Functional spiracles on mesothorax**: (0) present (Figs 6B, 7B); (1) absent (CI = 0.50, RI = 0.91).

Functional spiracles on the mesothorax are absent in Eubriinae and Psephenoidinae.

102. **Anal gills**: (0) present; (1) absent (CI = 0.33, RI = 0.81).

Anal gills are absent in Psepheninae and Eubrianacinae, which have abdominal gills instead.

103. **Anal gills**: (0) with three gill-tufts; (1) with two gill-tufts (CI = 0.50, RI = 0.50).

The two-tufted anal gills occur in *Sclerocyphon*, *Tychepsephus* and genus A.

104. **Abdominal gills**: (0) absent; (1) pectinate; (2) fan-like (CI = 100, RI = 1.00).

Abdominal gills occur in Psepheninae and Eubrianacinae. In Psepheninae, they are pectinate and located between abdominal segments I and VII (or II and VII or III and VII). However, they are fan-like and always located between abdominal segments III and VII in Eubrianacinae.

105. **Abdominal paratergites VIII**: (0) normal; (1) lengthened, reaching anterolateral angles of abdominal segment IX (Figs 4G, 6A); (2) lengthened, reaching apex of abdominal segment IX (Fig. 6C) (CI = 0.66, RI = 0.87).

The shortened abdominal paratergites VIII and lengthened abdominal paratergites VII that reach anterolateral angles of abdominal segment IX occur in *Afroeubria* and *Psepheninae*. Abdominal segments IX in Psephenoidinae are apically tapering and surrounded by the lengthened abdominal segments VII.

106. **Abdominal paratergites VII**: (0) same size as abdominal paratergites VII (Fig. 4K); (1) shorter than abdominal paratergites VII (Fig. 5G); (2) longer than abdominal paratergites VII (Fig. 5H) (CI = 0.28, RI = 0.66).

Shorter or absent abdominal paratergites VIII occur in Psepheninae, Psepheninae and most eubriines (except *Sclerocyphon*, *Tychepsephus*, *Eubria*, genus A, *Granuleubria*, *Ectopria* and *Macroebria*). Longer abdominal paratergites VIII only occur in *Microebria*.

107. **Apex of abdominal segment IX of earlier-instar larva**: (0) with notch; (1) smooth (CI = 0.50, RI = 0.87).

The bifurcate abdominal segment IX of earlier-instar larvae occurs in Eubriinae and some eubriines (*Nipponeubria*, *Schinostethus*, *Macroebria*, *Microebria*, *Dicranopselaphus* and genera B and C).

108. **Apex of abdominal segments IX of last-instar larva**: (0) with notch (Fig. 5B, C); (1) smooth (Fig. 5A) (CI = 0.50, RI = 0.88).

This is an ontogenetic character consistent with the preceding character, with the one exception of *Acneus*. Younger larvae of *Acneus* have the rounded apical margin of the last abdominal segment, which look like those of *Eubria*. However, mature larvae have a notch at the middle of the outward margin of the last abdominal segment (Fig. 5B). This difference between young and old stages of larvae caused Brown’s (1976) misidentification: young larvae were identified as *Dicranopselaphus* and mature ones as *Acneus*. The true identity of the larva of *Dicranopselaphus* was revealed when Barr & Spangler (1994) established the synonymy of *Alabameubria* Brown (1980) with *Dicranopselaphus*.

109. **Orientation of setae on apex of last abdominal segment in young larva**: (0) all orientated in same direction (1) setae on two sides orientated in different directions (CI = 0.50, RI = 0.90).

110. **Orientation of setae on apex of last abdominal segment in mature larva**: (0) all orientated in same direction (1) setae on two sides orientated in different directions (CI = 0.50, RI = 0.91).

The state distributions of characters 109 and 110 correspond with characters 107 and 108, except in Psepheninae. Although larvae of Psepheninae have rounded outward margins of the last abdominal segments throughout the entire larval stage, setae at both sides of the outer margin orientate in different directions (Fig. 16D).

111. **Setae on posterior margin of thoracic and abdominal tergites**: (0) ramose; (1) hair-like; (2) absent (CI = 0.33, RI = 0.55).

The absence of setae on the posterior margins of thoracic and abdominal tergites occurs in Eubrianacinae, Psepheninae, Psepheninae and some eubriines (*Sclerocyphon*, *Afroeubria*, *Microebria* and genera A, B and C). The hair-like setae occur in *Tychepsephus* and *Granuleubria*.
112. One pair of longitudinal rows of setae or sensillae near medial suture: (0) absent; (1) present (Fig. 5D, F) (CI = 0.50, RI = 0.92).

The paired longitudinal rows of setae or sensillae near the medial suture occur in most eubriines (except Tychepsephus). It is polymorphic in Afroeubria.

113. Pairs of longitudinal rows of setae or sensillae on abdominal tergites: (0) absent; (1) one paired row (Fig. 5F); (2) two paired rows (Fig. 5D) (CI = 0.50, RI = 0.77).

Longitudinal rows of setae or sensillae on abdominal tergites occur in eubriines. One pair of rows appears in Macroeubria, Microeubria and genera A and C. Two pairs of rows appear in Ectopria, Nipponeubria, Acneus, Eubria, DicranopSELaphus and genus B. This character is polymorphic in Sclerocyphon, Afroeubria and Schinostethus.

114. Pairs of longitudinal rows of setae or sensillae on abdominal tergites: (0) in the form of sensillae or hair-like setae; (1) granules or setae derived from granules; (2) ramose setae; (3) deciduous, membranous and hollow setae (CI = 0.50, RI = 0.40).

This is inapplicable to those genera without longitudinal rows of setae or sensillae on the abdominal tergites. Sensillae or hair-like setae occur in Sclerocyphon, Afroeubria, Homoeogenus and Schinostethus. Granules occur in Granuleubria, Ectopria, Nipponeubria, Acneus, Eubria, DicranopSELaphus and genus B. Ramose setae occur in Macroeubria. Membranous, hollow setae occur in Microeubria and in genera A and C.

115. Setae V on anterior margin of paratergites: (0) absent; (1) present (Figs 4G, L, 6D) (CI = 0.16, RI = 0.68).

Fig. 5. Larval habitus, dorsal view. A, Eubria palustris; B, Acneus sp.; C, Nipponeubria yoshitomii; D, Schinostethus (Sundodrupeus) albosulcus; E, DicranopSELaphus variegates; F, Macroeubria luei; G, genus B; H, Microeubria sp.; I, genus C.
Setae V occur in *Elmis, Afroebria, Granuleubria, Ectopria, Homoeogenus, Eubria, Dicranopselaphus, genus A, psephenoidines* (except *Afropsephenoides*) and eubrianacines.

116. **Anterior margins of paratergites:** (0) curved (Fig. 5G); (1) straight (Fig. 6E); (2) emarginate (Figs 5H, 6D) **(CI = 0.50, RI = 0.85).**

Straight anterior margins of paratergites occur in *Sclerocyphon, Tychepsephus, Afroebria, genus A, Neopsephenoides,* eubrianacines and psephenines. Emarginate anterior margins of paratergites occur in *Microebria,* genus C and the remaining genera of Psephenoidinae. Although the paratergites of *Xylopsephenoides* are very short, the emarginate anterior margins of paratergites can still be observed.

117. **Proventrite:** (0) medially segmented; (1) intact; (2) laterally segmented **(CI = 1.00, RI = 1.00).**

The intact proventrite occurs in *Sclerocyphon, Tychepsephus, Afroebria,* psephenoides, eubrianacines and psephenoidines. The lateral division of the proventrite occurs in the remaining genera of Eucriinae.

118. **Oeperculum:** (0) laterally open; (1) laterally closed, fused with auxiliary sclerites and tergite IX **(CI = 0.50, RI = 0.88).**

A laterally open operculum connects with abdominal ventrite IX only basally and can move upward 90°. It occurs in elmids, *Sclerocyphon, Tychepsephus,* genus A and psephenines. The laterally closed operculum connects with the abdominal ventrite basally and laterally. It can move upward only 30° at most.

119. **Oeperculum:** (0) near apex of abdominal ventrite **(Fig. 10A); (1) near base, with pseudosegment connected**

with base of abdominal ventrite IX (Fig. 10C); (2) connected with base of abdominal ventrite (Fig. 10E) (CI = 0.50, RI = 0.83).

Costa et al. (1999: character 60) thought that only Eubriinae have opercula, and supposed that the operculum functions to cover the anal gills. Actually, such a structure exists in all members of Psephenidae. Even if the anal gills are reduced and ventral gills appear in Eubrianacinae and Psepheninae, the opercula do not disappear, but become very small. The opercula of Psephenoidinae extend into the entire ventrite (Hinton, 1955). The operculum derives from abdominal ventrite IX (Böving, 1929) and why Costa et al. (1999; characters 60 and 61) called it abdominal segment X is puzzling. The transverse plate separating the operculum from the base of the abdominal ventrite in Eubrianacinae, Sclerocyphon, Tychepsephyrus, genus A, Ectopria and Granuleubria (all in Eubriinae) was thought to be the original abdominal segment IX by Costa et al. (1999). It should be called a ‘pseudosegment’ to avoid confusion (see Fig. 10C).

120. Number of paired auxiliary sclerites along sides of ninth abdominal sternite: (0) zero (Fig. 10A); (1) one (Fig. 10B); (2) two (Figs 10C, 11A); (3) three (Figs 10D–F, 11B–D) (CI = 0.75, RI = 0.94).

This character is polymorphic in Sclerocyphon (states 2 and 3). A single pair of auxiliary sclerites occurs in Afroeubria, psephenoidines and eubrianacines. Two pairs of auxiliary sclerites appear in Eubria and genus A. Three pairs of auxiliary sclerites occur in the remaining genera of Eubriinae.

Fig. 7. Larval habitus, dorsal view. A, Jinbrianaax jaechi; B, Eubrianaax manakikikuse; C, Afroebria ferdyi; D, Odontanax dohertyi; E, Mubrianaax robuster; F, Jaechanax dentatus.
Fig. 8. Chaetotaxy on abdominal paratergite I (except for M, metathoracic paratergite). A, B, Mataeopsephus esakii; C, Psephenoides subopacus; D, Xylopsephenoides gihongi; E, F, Afrobianax ferdyi; G, earlier-instar larva of Jinbrianax jaechi; H, Afroeubria sebastiani; I, J, Tychepephus felix; K–N, genus A; O, P, Phanocerus clavicornis; Q, Elmis aenea. BS = basal pieces; D1 = first dorsal setae; D2 = second dorsal setae; LT = lateral teeth; Se5 = seta 5; SPP = setae on posterior margins of paratergites; VS = ventral setae.

© 2007 The Authors
Journal compilation © 2007 The Royal Entomological Society, Systematic Entomology, 32, 502–538
Fig. 9. Chaetotaxy on abdominal paratergite I (except for P and T, metathoracic paratergite). A, Granuleubria sp.; B, C, Ectopria nervosa; D, E, Homoeogenus laurae; F, G, Nipponubria yoshitomii; H, I, Acneus sp.; J, K, Eubria palustris; L, M, genus B; N, O, Macroebria luci; P–R, Schinostethus (Sundodrupeus) albosulcus; S, Dicranopsetahus variegatus; T, U, Microebria sp.; V, genus C. D1 = first dorsal setae; D2 = second dorsal setae; D3 = third dorsal setae; Se5 = seta 5; SPP = setae on posterior margins of paratergites; VS = ventral setae.

© 2007 The Authors
Journal compilation © 2007 The Royal Entomological Society, Systematic Entomology, 32, 502–538
Fig. 10. Chaetotaxy on abdominal ventrite IX. A, *Elmis aenea*; B, *Afroebria sebastiani*; C, genus A; D, *Tychepsephus felix*; E, *Homocogenus laurae*; F, *Granuleubria* sp. AS1 = first auxiliary sclerite; AS2 = second auxiliary sclerite; AS3 = third auxiliary sclerite; D1 = first dorsal setae; D2 = second dorsal setae; O = operculum; P = pseudosegment; SpB = spiracular brush.

© 2007 The Authors
Pupa

121. Dorsum of pupa: (0) soft; (1) sclerotized; (2) soft except sclerotization of last three abdominal tergites; (3) soft except sclerotization of outer margin of abdominal paratergites VII (CI = 0.75, RI = 0.87).

The sclerotization of the pupa is associated with the lack of other protective devices (such as hardened larval exuviae) or concealment under other substrates. Pupae of eubriines and psephenoidines are dorsally sclerotized because they are exposed. Pupae of Jinbrianax, Mubrianaax, Afrobianax and Eubrianaax have sclerotized abdominal tergites VII–IX because they are exposed from larval exuviae. By contrast, those of Jaechanax and Odontanax have a sclerotized outward margin of abdominal segment VII.

122. Functional spiracles on abdominal segment I: (0) present (Fig. 12A); (1) reduced (CI = 0.50, RI = 0.66).

Spiracles on abdominal segment I appear in Elmidae and Psepheninae.

123. Functional spiracles on abdominal segments II–VI: (0) present (Fig. 12A, B, D); (1) reduced or absent (Fig. 12C) (CI = 1.00, RI = 1.00).

The absence of spiracles on abdominal segments II–VI characterizes Eubriacinae.

124. Spiracles on each paratergite: (0) single (Fig. 11A, B); (1) subdivided into numerous small openings (Fig. 12C, D) (CI = 0.50, RI = 0.88).

Numerous fine spiracular openings occur in psephenoides and eubriacines.

125. Spiracular gills: (0) absent; (1) present (Fig. 12D) (CI = 1.00, RI = 1.00).

Each spiracular opening develops into the spiracular gills in psephenoides.
126. **Spiracular tubercles**: (0) very short (Fig. 12B); (1) moderately long, as long as paratergites; (2) very long, much longer than paratergites; (3) absent (CI = 0.60, R1 = 0.84).

Moderately long spiracular tubercles occur in *Granuleubria, Ectopria, Homoeogenus, Eubria, Macroeubria* and psephenoidines. Long spiracular tubercles occur in *Schinosiostethus* and *Microeubria*. Spiracular tubercles are absent in eubriines.

127. **Pronotum**: (0) normal; (1) expanding outward (CI = 0.50, R1 = 0.90).

An expanding pronotum that covers the head occurs in eubriines and psephenoidines.

128. **Abdominal paratergites I**: (0) normal; (1) reduced or absent, mesothoracic paratergite connected with abdominal paratergite II (Fig. 12D) (CI = 1.00, R1 = 1.00).

The absence of abdominal paratergite I characterizes Psephenoidinae.

129. **Paratergites II–VI**: (0) separated; (1) tightly connected (Fig. 12D) (CI = 0.66, R1 = 0.66).

Pupae of *Afroeubria* and psephenoidines (except *Afropsephenoides*; Fig. 13A) have abdominal paratergites II–VI tightly connected.

130. **Setae of outer margins of abdominal paratergites II–VI**: (0) hair-like; (1) absent; (2) stout (CI = 0.50, R1 = 0.83).
Setae on outward margins of abdominal paratergites II–VI are absent in *Afroeubria*, *Microeubria*, eubrianacines and psephenines. Setae of psephenoidines become sclerotized and stout.

131. **Abdominal ventrite VI**: (0) without adherent device; (1) with adherent device (CI = 1.00, RI = 1.00).

Pupae of eubrianacines have an adherent device on abdominal ventrite VI.

132. **Adherent material on outer margins of abdominal segments II–VI**: (0) none (Fig. 13A); (1) on basal halves of outer margins (Fig. 13B); (2) on entire outer margins (Fig. 13C) (CI = 0.66, RI = 0).

Pupae of most psephenoidines (except *Afropsephenoides*) can secrete adherent material on the outer margins of abdominal segments II–VI. Adherent material occurs all over the outward margins in *Neopsephenoides* and *Psephenoides*, but only on the basal halves in *Xylopsephenoides*.

133. **Paratergites VII–IX**: (0) separated; (1) tightly connected (Fig. 12C, D) (CI = 1.00, RI = 1.00).

Tightly connected abdominal paratergites VII–IX occur in *Afroeubria*, psephenoidines and eubrianacines.

134. **Abdominal paratergites VII**: (0) similar in size to abdominal paratergites VI; (1) lengthened, surrounding abdominal IX (Fig. 12D) (CI = 1.00, RI = 1.00).

Lengthened seventh abdominal paratergites characterize Psephenoidinae.

135. **Apical margin of abdominal segment IX**: (0) with posterolateral processes (Fig. 12B); (1) truncated (Fig. 11C); (2) rounded (Fig. 12A, D) (CI = 0.50, RI = 0.83).

A truncated apical margin of the ninth abdominal segment appears in *Afroeubria*, *Homoeogenus* and eubrianacines. A round one occurs in psephenoidines and psephenines.

136. **Aedeagus**: (0) concealed under abdominal tergite IX (Fig. 13E); (1) exposed (Fig. 13D) (CI = 0.50, RI = 0).

The aedeagus is exposed in *Afropsephenoides* and *Xylopsephenoides*.

137. **Setae on outer margins of last three abdominal segments**: (0) long; (1) absent; (2) stout (CI = 0.40, RI = 0.75).

The state distribution is consistent with character 130, except that *Jinbrianax* has long setae only on the outer margin of the last three abdominal segments.

138. **Outer margins of abdominal segments VII–IX**: (0) intact; (1) subdivided into slender processes (Fig. 12C) (CI = 0.33, RI = 0).

Division of the outward margins of the posterior three abdominal segments occurs in *Mubrianax* and *Eubrianax*.

139. **Pair of longitudinal rows of long setae near medial suture**: (0) absent; (1) present (Fig. 12B) (CI = 0.50, RI = 0.88).

A pair of longitudinal rows of long setae near the medial suture occurs in most eubriines (except *Afroeubria*).

140. **Outer margins of spiracles on abdominal segment VII**: (0) without openings (Fig. 14A); (1) with a row of openings (Fig. 14B–D) (CI = 0.50, RI = 0.80).

Most eubrianacines (except *Jinbrianax*) have one row of spiracular openings on the outward margins of abdominal segment VII.

141. **Distribution of openings of spiracles on abdominal segment VII**: (0) confined to vermiculations and surrounding spiracle (Fig. 14A); (1) reduced except those on outward margins of spiracles (Fig. 14C, D); (2) random (Fig. 14B); (3) scattered (Fig. 14E) (CI = 1.00, RI = 1.00).

This character is only applied to Eubrianacinae whose pupae have numerous fine openings on the spiracles of abdominal segment VII. They are confined to vermiculations in *Jinbrianax*, or to the outward margins in *Odontanax* and *Jaechanax*, or distributed randomly in *Mubrianax*, or sparsely distributed in *Afrobrianax* and *Eubrianax*.
142. **Outer margin of each spiracle:** (0) without processes; (1) with one process (Fig. 14D) (CI = 0.50, RI = 0.50).

One small process on the outward margin of each spiracle occurs in *Mubrianax, Afrobrianax* and *Eubrianax* (Fig. 14B, D, E).

143. **Pupation under or above water:** (0) above water; (1) underwater (CI = 1.00, RI = 1.00).

Only pupae of *psephenoidines* can pupate under water.

Results

The phylogenetic analysis yielded two most-parsimonious trees. The strict consensus tree calculated from both trees has 439 steps, CI = 45, RI = 75. *Psephenidae* and all of its subfamilies are monophyletic, with the exception of *Eubriinae*. The inclusion of *Afroeubria* causes *Eubriinae* to be paraphyletic (Fig. 15). Although only unambiguous character state changes are shown on the tree, some evolutionary scenarios are proposed for those characters with ambiguous state changes.

Discussion

Monophyly of Psephenidae

Costa *et al.* (1999) concluded that two larval characters support the monophyly of *Psephenidae*, of which one is larvae having the ‘flattened’ body form. However, this may not be correct, because several *Elmidae* have ‘flattened’ larvae, as in most eubriine genera, but these genera were not included in their phylogenetic analysis. On the basis of the current phylogenetic analysis (Fig. 15) with the use of unambiguous transformation, the monophyly of *Psephenidae* is supported by eight apomorphies. Some of these characters may be associated with larvae living in fast-running water. In one way, the ‘flattened’ larvae are transformed further into the ‘streamlined’ ones. Those characters include the anterior expanded apical margin of the prothorax that conceals the head (58: 1) and the widened body. Such a body shape may promote their survival in fast-running waters because they can move across smooth surfaces easily (Smith & Dartnall, 1980; McShaffrey & McCafferty, 1987). Thus, water pennies can exploit food sources on the surfaces of rocks exposed to high-energy flows. In addition, the monophyly of *Psephenidae* is supported by the specialized mandibles that have no apical teeth (54: 1) and enable specialized feeding on diatoms and algae growing on the smooth surfaces of stones.

Changes in morphology reflect the use of a diversity of substrates and habitats. The recurrence of elongate larvae (55: 1) appears once in *Eubriinae*, *Psephenoidinae* and *Eubriinae*. The transformation of the body in *Eubriinae* (*Mubrianax + Jaechnax*) and *Psephenoidinae* (*Xylopsephenoidea*) appears to be a parallelism associated with similar substrates – slender twigs. Another change is the recurrence of the thickened and apically toothed mandibles (54: 0) associated with xylophagy. In addition, there are a number of homoplastic characters for both *Eubriinae* and *Elmidae*. Not only does the elongate body recur in larvae of *Eubriinae* (55: 1), but also the curved and loosely connected paratergites (116: 0).

Parallel evolution occurs in those taxa that can pupate on smooth surfaces of stones. *Psepheninae* and *Eubriinae* adopt a similar strategy – pupating within the hardened larval terga. In the respiratory system, pupae of *Psepheninae* maintain the pleiomorphic state – spiracles appear at abdominal segments I–VII (122: 0, 123: 0). By contrast, those of *Eubriinae* have spiracles confined to abdominal tergum VII (122: 1, 123: 1). Either the last three abdominal tergites are sclerotized and replace the larval ones (Fig. 12C) or the spiracles are sclerotized and project from the crevice between abdominal paratergites VI and VII of larval skins. An adherent device has developed on abdominal ventrite VI in *Eubriinae* (131: 1). Pupae of *Afroeubria* and *Psephenoidinae* are not covered by the larval skin, but their dorsal surface is sclerotized. There is no crevice left between the lateral margins of pupae and substrate. Such pupae resemble larvae, including in *Eubriinae* (133: 1). Paratergites of pupae in *Afroeubria* expand and connect tightly (129: 1), presumably so that the pupa can attach to stones easily. However, in *Psephenoidinae*, the paratergites of the pupae are reduced, but their lateral margins secrete sticky material (132). A reduction of abdominal paratergite I (128: 1) in *Psephenoidinae* is correlated with the absence of spiracles on the first abdominal segment of all psephenids, except *Psepheninae*.

The monophyly of *Psephenidae* indicates that there are some significant evolutionary events in the respiratory systems of larvae. The respiratory system of larval *Elmidae* (outgroup) is very uniform, with anal gills (composed of three gill-tufts), and in mature larvae, functional spiracles on the mesothorax and abdominal segments I–VIII (Spangler & Santiago-Fragoso, 1992) suggesting the uptake of atmospheric oxygen when they crawl out of the water for pupation.

Two evolutionary events appear in *Psephenidae*: the presence of spiracles extends throughout all instars (94: 1) and spiracles on abdominal segments I–VII are reduced (93: 1). The former change may promote larval survival in more fluctuating environments, because they can utilize atmospheric oxygen during any stage. An exception is *Psephenoidinae*, whose larvae have no spiracles in any instar (95: 1): the absence of spiracles may be associated with underwater pupation (143: 1). The second event has the functional spiracles of the eighth abdominal segment moved to the margin, with the exception of *Eubriinae* (97).

Associated with this change is the development of spiracular brushes, which are present on abdominal segment IX opposite the spiracles on abdominal segment VIII. Spiracular brushes, composed of a cluster of stout setae (Fig. 16A), were reported in *Eubriinae*, perhaps functioning to clean the spiracles (Hinton, 1955). Spiracular brushes also occur in *Psepheninae*, in which they are arranged as a row of flattened ramose setae along the complete lateral margin.
Such an array of spiracular brushes may imply an evolutionary trend of abdominal paratergite VIII. Spiracles might have been moving towards the base of abdominal segment IX from the apex by shortening abdominal paratergites VIII. To live in fast-running water, spiracles are parallel to the body and the spiracular brushes become smaller and flattened. The discovery of a spiracular brush in Psepheninae extends this character to the whole family – the spiracular brush (98: 1, 99: 1) becomes synapomorph for all Psephenidae. However, the phylogenetic position of Eubrianacinae then becomes a bit puzzling, because their spiracles are inside abdominal segment VII (97: 0), as in Elmidae. However, this character state is probably a reversal in the Eubrianacinae. Supporting evidence exists in the most

Fig. 14. Pupal spiracles. A, Jinbrianax jaechi; B, Mubrianax robustior; C, Odontanax dohertyi; D, Jaechanax dentatus; E, Eubrianax serratus.
Fig. 15. Strict consensus of two most-parsimonious trees based on the full dataset (439 steps, consistency index = 0.45, retention index = 0.75). Only unambiguous changes are shown on the cladogram. Nonhomoplastic apomorphies are indicated by black circles, whereas homoplastic apomorphies are indicated by white circles. The numbers above the clades are Bremer support values (maximum Bremer support value = 5).
ancstral clade within Eubrianacinae – Jinbrianax. Larval Jinbrianax retain the spiracular brush on abdominal segment IX (Fig. 16C), implying that the ancestors of Jinbrianax (which are equal to Eubrianacinae) have larval spiracles that are located at the posterior margin of abdominal segment VIII and the base of paratergites, and the spiracular brushes on abdominal segment IX are responsible for cleaning. Spiracular brushes are reduced in other eubriane- cine genera (98: 0, 99: 0).

Position of Psepheninae

Although the sister-group relationship between Psepheninae and the remaining taxa of Psephenidae is weakly supported (Fig. 15), this position reveals trends in some important characters. An evolutionary trend may exist involving the bifurcate apex of abdominal segment IX in Elmidae being transformed into the smooth apex of basal psephenids (107, 108). Only Psepheninae have ontogenetic characters to support the hypothesis that the emarginate apex of abdominal segment IX is ancestral: the pharate larva has an emarginate apex and the setae at the posterior margin of the abdominal segment are orientated in two directions and separated at the middle during the whole larval stage.

Thus, Psepheninae seems unlikely to be a descendant of those that have convex or straight apices, i.e. all other subfamilies except some advanced eubrine genera.

The operculum is a cover for the anal gills near the apex of abdominal ventrite IX, as in the Elmidae. Two evolutionary trends involving the operculum in Psephenidae are indicated (Fig. 17): the operculum may move anteriorly to the base of abdominal segment IX; the restriction of the opening of the operculum by fusion laterally with auxiliary sclerites. The operculum approaches the base of abdominal ventrite IX, which either connects with the base (Fig. 17B, C, G) or forms a ‘pseudosegment’ between the operculum and the base of abdominal segment IX (Fig. 17D–F). Auxiliary sclerites arise along side the operculum. These are either reduced to a single slender sclerite laterally connected with the operculum and abdominal tergum IX (Fig. 17C, E) or the apical pair of auxiliary sclerites expands posteriorly and fuses with the operculum and tergum IX (Fig. 17F, G). This fusion limits movement of the operculum, which then cannot rotate up to 90°.

Parallelism between Psepheninae and Eubrianacinae

Psepheninae were presumed to be close to Eubrianacinae, based on the immature stages (Hinton, 1955, 1966). For
example, larvae of both subfamilies have ventral gills, tergopleural sutures, posterior plates, an amphipneustic respiratory system, costal lines, and they use the hardened larval exuvium for covering the pupa. However, differences in structure and composition have indicated that most of those characters are homoplastic (Hinton, 1955; Lee et al., 2001). The phylogenetic analysis supports this hypothesis.

Eubrianacinae have similar pupal protection as Psepheninae in that they use the hardened larval terga to cover the pupae. However, the larval exuviae are so hard that some morphological modification of the cuticle must appear to promote its flexibility. Some additional sulci are present. For example, tergopleural sulci are found on all but the last two abdominal terga in the Psepheninae (90: 1), but in Eubrianacinae they are absent on the pronotum and present on abdominal tergum VIII (90: 2). In addition, some supplementary sclerites, e.g. posterior plates on the thoracic terga, are found in Psepheninae (86: 1) and Eubrianacinae (86: 2). The oblong larvae of Mubrianax and Jaechanax have additional apomorphies compared with others within Eubrianacinae. They include additional sulci, such as that which divides the posterior plate on the pronotum (84: 1), and the periocellar sulci (85: 2). Additional posterior plates appear on abdominal terga I–III (87: 1). This seems to imply that the oblong body needs more sulci for flexibility.

In another view, the pharate pupa is possibly homologous in Psepheninae and Eubrianacinae. The entire pupa of Jaechanax and Odontanax is covered by the larval exuvia. Fine spiracular openings, which are confined to the outward margin of the pupal paratergite VII, project from crevices between larval paratergites VI and VII. Hinton (1966) found that the spiracles on abdominal segment VII of Mataeopsephus are enlarged. Does it imply that the ancestor of pupae in Eubrianacinae is derived from a taxon like Mataeopsephus? This idea is not supported by two facts. First, pupae of all members of Eubrianacinae have widened paratergites on the last three abdominal terga resembling those of the larvae (133: 1) (Fig. 12C), including the unexposed pupae of Jaechanax and Odontanax, which become softened and hide under the larval exuviae. However, no psephenine pupae have the last three abdominal terga resembling larval terga. Second, the unexposed pupae have spiracular openings confined to the outer margins of abdominal paratergite VII because only the outer margins of abdominal paratergite VII project from under the hardened larval exuviae and contact air. The exposed pupae whose last three abdominal terga of the larval exuviae are shed and replaced by those of pupae have the whole surface of the last three pupal terga contacting the air. Thus, additional spiracular openings can appear inside abdominal tergite VII for breathing more air and those openings on the outer margins are not necessarily reduced. However, the exposed pupae of the most primitive clade, Jinbrianax, have spiracular openings inside abdominal tergite VII, but not on the outer margins. This implies that Eubrianacinae ancestrally have spiracular openings inside of abdominal tergite VII. Ancestors of Eubrianacinae probably did not come from a taxon like Mataeopsephus.

Parallel evolution also happens in the respiratory systems of larvae living in fast-running water. Comparing streams, ponds and creeks, there is relatively higher dissolved oxygen in fast-running water. One trend involves changes in the primitive respiratory system (which includes three tufts of anal gills, hidden between the ninth abdominal ventrite and tergum). Three gill-tufts are reduced to two in Sclerocyphon, Tychepsephus, genus A (Eubriinae), and Neopsephenoides and Xylopsephenoides (both in Psephenoidinae). A second trend involves the lateral shape of larvae. According to hydrodynamics, an oblique slope along the anterior margin of the long, flattened and straight paratergite can increase...
the attachment power, thus helping to avoid being washed off the substrate. The costal lines that are present in Eubrianacinae and Psepheninae help to form a peak in the oblique slope (89: 1). The species of *Psephonoides* (Psephenoidinae) have similar structures.

Evolution of the marginal peg setae in Eubrianacinae

An intriguing question concerns the origin of the delicate, autapomorphic marginal peg setae of Eubrianacinae. A marginal peg seta is composed of two discrete parts (Fig. 18B). The basal piece is cylindrical, with teeth on the sides and one pair of lanceolate setae on the base and apex. The apical piece is either filamentous or paddle-like. Are the hair-like setae with darkened basal halves (Fig. 18A) (D2, as in Psepheninae, Psephenoidinae, *Afroeubria*, *Sclerocyphon* and *Tychepsephus*) directly transformed into the marginal setae of Eubrianacinae (Fig. 18B)? That is, did the basal, darkened half of the hair-like seta (D2) develop into the basal piece of marginal peg seta, and the apical one into the apical piece? If so, it is difficult to explain two unique phenomena in the Eubrianacinae. One marginal peg seta near the posterolateral angles of the paratergites has two apices, and one long hair-like seta is located at the base of two apices (Fig. 18B). The other phenomenon is that in the primitive clade, *Jinbrianax*, the marginal peg seta at the posterolateral angle of each paratergite has a row of branches on the outer side. One explanation is that only the apical pieces of the marginal peg setae are attributed to the hair-like setae (D2); and the basal pieces grew from the base. When basal pieces grow, they push the cuticle of paratergites towards the margin. One hair-like seta (seta 5) near the posterolateral angle of each paratergite has been pushed into the margin, finally connecting with marginal pegs. This seta (115: 1) is also found in *Afroeubria*, some members of Psephenoidinae and Eubriinae. As the basal pieces continue growing, the marginal peg seta at the posterolateral angle of each paratergite adds branches. Thus, we propose a hypothesis of evolution of the typical marginal peg setae (Fig. 19): the primitive marginal peg setae have one row of D2 setae and two rows of VS, as in *Granuleubria, Ectopria* and genus B within Eubriinae (Fig. 19A) (81: 1). One of two rows of VS is located at the apices of the basal pieces of the marginal peg setae when the basal pieces grow (Fig. 19B). Then, one of the sides of the basal pieces has setae developed into teeth (Fig. 19C) (64: 1, as in *Jinbrianax*). Finally, the other side of the basal pieces also has setae developing into teeth (Fig. 19D) (64: 2, as in other members of Eubrianacinae). An additional ontogenetic character supports the basal pieces of the marginal peg setae being derived from the D2 setae. Pharate larvae of Eubrianacineae have reversed apical pieces of marginal peg setae, but basal ones are normal. This phenomenon also happens to the D2 setae of those of Psepheninae, implying that only the apical pieces are derived from the hair-like setae (D2).

Monophyly of subfamilies

The phylogenetic analysis and Bremer support indices indicate that all subfamilies are monophyletic and well supported, with the exception of Eubriinae, which is paraphyletic due to the inclusion of *Afroeubria*. This genus, originally placed in Eubriinae, is now hypothesized to be the sister group of Psephenoidinae. Thus, *Afroeubria* should either be raised to be a discrete subfamily or transferred into Psephenoidinae in order to maintain the monophyly of all subfamilies. A number of apomorphic characters for Psephenidinae may be related to the underwater puation, which is unique for aquatic beetles. If *Afroeubria* is transferred into Psephenoidinae, these synapomorphies will be replaced by much fewer, indicating the monophyly of *Afroeubria + Psephenoidinae* s.str. Because the support of the monophyly of the subfamilies (except Eubriinae) is very strong, adding more taxa in the future could only cause the phylogenetic position of *Afroeubria* to become more variable and perhaps necessitate a transfer of its origin to the base of other subfamilies. Because all other subfamilies will not change their contexts, even if *Afroeubria* is transferred to any of the subfamilies, establishing a discrete subfamily for *Afroeubria* will not affect the monophyly of other subfamilies.

The monophyly of the Psepheninae is supported by 15 apomorphies: adults with the presence of the median longitudinal sulcus on mesoventrite (22: 1), vestigial metaventral transverse suture (24: 1) and seven visible ventrites in males and six in females (25: 1); in larvae (Fig. 6A, B) medial suture well developed, reaching abdominal tergum VII (56: 0), sclerotized bases of D2 setae (67: 0; 69: 0), dorsum having...
The monophyly of the Eubriinae is supported by seven apomorphies: crenulation on basal margins of pronotum, elytra and scutellum in adults (absent in *Eubria* and *Microeubria*) (15:1, 17:1); larvae with elongate setae on posterior margins of paratergites (82:1), two-tufted anal gills (103:1), one pair of longitudinal rows of setae or sensillae near medial suture (112:1); pupae with hair-like setae on outer margins of abdominal paratergites II–VI (130:0), with long setae on outer margins of abdominal segments VII–IX (137:0), one pair of longitudinal rows of long setae near medial line (139:1).

Adults vs. immature stages

When data derived from adults and immature stages were analysed separately, three undetermined genera (genera A, B and C) were removed from the former analysis because of no information on adults. Adult data comprise 50 characters (1–50), which are 35% of the full dataset. Analysis of adult data yielded 33 most-parsimonious cladograms. The strict consensus (Fig. 20A) calculated from these cladograms is very different and much less resolved than that based on the full dataset. By contrast, analysis of immature stage data yielded 20 most-parsimonious cladograms whose strict consensus (Fig. 20B) is similar to that from the complete dataset. Obviously the immature data provide much more information on phylogeny, supporting Hinton’s (1955, 1966) decision to study the taxonomy of Psephenidae based only on larvae and pupae. In addition, it may reflect the life history and strategy of psephenids – the immature stages are long-lived and subject to more selection pressure from living in various habitats, whereas adults, which are responsible only for reproduction, are short-lived and subject to less selection pressure. This life history is similar to that of mayflies, an order in which McCafferty & Wang (2000) also used immature stages to construct phylogenetic systematics of the higher ranks. Psephenids are a good example to emphasize the importance of immature stages, as Emden (1957) indicated.

Conclusion

Psephenidae is a well-defined monophyletic group. Most morphological characters supporting the monophyly of water penny beetles are associated with larvae living in fast-running water. The diversification of various subfamilies results in a number of apomorphies for each subfamily. However, very few morphological characters provide information for relationships between subfamilies. This study shows that immature stages provide more valuable phylogenetic information than adults. Moreover, the complete dataset yields the best phylogenetic results. Although convergencies and parallelisms occur among various taxonomic
groups and stages, they seldom affect the phylogenetic analysis because they can be treated as different character states due to morphological differentiation. This morphological differentiation can be detected if sufficient materials are examined. This study indicates that a combined larval and adult dataset, and sufficient materials, are necessary for phylogenetic research.

Systematic account

Afroeubriinae, subfam.n.

Type genus. *Afroeubria* Villiers, 1961.

Larval diagnosis (Fig. 4G). This subfamily is close to _Tychepsephus_ and _Sclerocyphon_, sharing wide, rectangular and connected paratergites, anal gills, the presence of spiracles on abdominal segment VIII and spiracular brushes composed of clusters of setae; but differing by the three-segmented maxillary palpi and the two-segmented labial palpi, the shorter antennomere 1, the prominent sulcus 1 on the prothorax, the shortened abdominal paratergite VIII with spiracles on apices, ramose setae on posterior margins of the paratergites (Fig. 8H) and anal gills with three gill-tufts.

Pupal diagnosis. Most similar to _Psephenoidinae_, pupating above the water on the smooth surfaces of stones; pupae naked; differs by the lack of spiracular gills and the lack of long hair-like setae at the outer margin of the prothorax, and by the presence of well-developed abdominal paratergites II–VII.

Adult diagnosis. *Afroeubria* and _Tychepsephus_ are distinguished from all other psephenids by the punctate pronotum and elytra caused by pubescence. *Afroeubria* may be distinguished from eubriines by the combination of the following characters: apically tapering terminal segments of maxillary and labial palpi (Fig. 1O), acute mesosternal process and smooth basal margins of the elytra, scutellum and pronotum.

Ecology. Like _Sclerocyphon_ and _Tychepsephus_, larval _Afroeubria_ may be found on the underside of stones in clean streams. Pupae were also found on the underside of stones but above the water.

Biodiversity. The monotypic subfamily contains three species, which have been revised by Lee _et al._ (2003b).

Key to larvae of the subfamilies of Psephenidae

1. Anal gills; without spiracles on mesothorax 2
1’. Abdominal gills; with spiracles on mesothorax 4

2. Seventh abdominal paratergites elongate, reaching apex of ninth abdominal segment; eighth abdominal paratergites reduced; mature larvae without spiracles on eighth abdominal segment................. _Psephenoidinae_ 2’. Seventh abdominal paratergite normal, not reaching apex of ninth abdominal segment; eighth abdominal paratergite short or normal; mature larvae with spiracles on eighth abdominal segment ... 3
3. Comb-like setae margined on anterior margins of paratergites .. Afroebriinae subfam.n.

3'. Without comb-like setae margined on anterior margins of paratergites .. Eubriinae

4. Eighth abdominal paratergites normal, spiracles inside eighth abdominal paratergites; marginal peg setae composed of two discrete parts: apical and basal pieces Eubrianacinae

4'. Eighth abdominal paratergites shortened, spiracles on apices of eighth abdominal paratergites; marginal setae sclerotized in basal halves Psepheninae

Acknowledgements

We are grateful to Harry P. Brown for providing valuable material. We also thank those who assisted in our field trips, including T. Keith Philips, Hiroyuki Yoshitomi and Ming-

Key to pupae of the subfamilies of Psephenidae

1. Larval terga covering pupae ... 2
1'. Pupae exposed .. 3

2. Paired spiracles on abdominal segments I–VII; last three abdominal segments normal.................. Psepheninae

2'. Spiracles on abdominal segments I–VI reduced; openings of spiracles subdividing into numerous tiny holes; last three abdominal paratergites tightly connected, resembling those of larvae.................... Eubrianacinae

3. Pupation on underside of stones nearby or in streams; paratergites wide and tightly connected, without visible crevices .. Eubrianacinae

3'. Pupation on cryptic sites, such as wood holes nearby streams; paratergites slender and apically tapering Eubriinae

4. Pupation taking place under water; spiracular gills well developed .. Psephenoidinae

4'. Pupation taking place above water; spiracular gills reduced ... Afroebriinae subfam.n.

Key to adults of the subfamilies of Psephenidae

1. Seven visible abdominal ventrites in males; six visible abdominal ventrites in females............. Psepheninae

1'. Five visible abdominal ventrites in both sexes 2

2. Body flattened; anterior margin of pronotum rounded, concealing head .. 3

2'. Body dorsally convex; anterior margin of pronotum truncate or emarginate; head exposed 4

3. Elytra soft, without punctures Psephenoidinae

3'. Elytra scleritized, with dense punctures Eubrianacinae

4. Apex of mesosternal process acute, posterior and lateral margins of terminal segments of maxillary and labial palpi with sensilla Afroebriinae subfam.n.

4'. Apex of mesosternal process truncate or emarginate; only lateral margins of terminal segments of maxillary and labial palpi with sensilla Eubriinae

References

© 2007 The Authors
Appendix 1. Updated classification of Pic’s species belonging to Eubriinae.

<table>
<thead>
<tr>
<th>Pic’s species</th>
<th>Valid name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drupeus atriceps Pic, 1916</td>
<td>Gramuleubria atriceps (Pic)</td>
</tr>
<tr>
<td>Drupeus marginatus Pic, 1944</td>
<td>Gramuleubria marginata (Pic)</td>
</tr>
<tr>
<td>Drupeus notatithorax Pic, 1923</td>
<td>Schinostethus notatithorax (Pic)</td>
</tr>
<tr>
<td>Drupeus indicus Pic, 1916</td>
<td>Schinostethus nigricornis Waterhouse, 1880</td>
</tr>
<tr>
<td>Drupeus obscurus Pic, 1923</td>
<td>Homoeogenus obscurus (Pic)</td>
</tr>
<tr>
<td>Drupeus pruinosus Pic, 1923</td>
<td>Schinostethus opacus (Waterhouse, 1880)</td>
</tr>
<tr>
<td>Drupeus pruinosus Pic, 1944</td>
<td>Schinostethus pruinosus (Pic)</td>
</tr>
<tr>
<td>Grammeubria atra Pic, 1938</td>
<td>Dicranopselaphus emmanueli (Pic, 1918)</td>
</tr>
<tr>
<td>Grammeubria diversipes Pic, 1923</td>
<td>Schinostethus nigricornis Waterhouse, 1880</td>
</tr>
<tr>
<td>Grammeubria emmanueli Pic, 1918</td>
<td>Dicranopselaphus emmanueli (Pic)</td>
</tr>
<tr>
<td>Grammeubria javana Pic, 1916</td>
<td>Dicranopselaphus javanus (Pic)</td>
</tr>
<tr>
<td>Grammeubria rufa Pic, 1916</td>
<td>Dicranopselaphus rufus (Pic)</td>
</tr>
<tr>
<td>Grammeubria testaceicornis Pic, 1923</td>
<td>Dicranopselaphus testaceicornis (Pic)</td>
</tr>
<tr>
<td>Ectopria multimaculata Pic, 1934</td>
<td>Dicranopselaphus multimaculatus (Pic)</td>
</tr>
<tr>
<td>Ectopria multinotata Pic, 1924</td>
<td>Sclerocyphon maculatus Blackburn, 1892</td>
</tr>
</tbody>
</table>

© 2007 The Authors
Journal compilation © 2007 The Royal Entomological Society, Systematic Entomology, 32, 502–538
Appendix 2. Taxa and localities of immature stages examined in the analysis.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psephenidae</td>
<td></td>
</tr>
<tr>
<td>Acneus sp.</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Afroeubria sebastiani Lee, 2003</td>
<td>South Africa</td>
</tr>
<tr>
<td>Dicranospelaphus variegatus Horn, 1880</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>D. inparis Lee, Yang & Satô, 2000</td>
<td>Laos</td>
</tr>
<tr>
<td>Ectopria leechi Brigham, 1980</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>E. nervosa (Melsheimer, 1845)</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>E. lobata Lee, Yang & Satô, 1998</td>
<td>China</td>
</tr>
<tr>
<td>Eubria palustris (Germar, 1818)</td>
<td>Austria</td>
</tr>
<tr>
<td>Granuleubria fontana Lee & Yang, 1999</td>
<td>Vietnam</td>
</tr>
<tr>
<td>Granuleubria sp.</td>
<td></td>
</tr>
<tr>
<td>Homoeogenus laurae Lee & Yang, 1993</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Homoeogenus sp.</td>
<td></td>
</tr>
<tr>
<td>Macroleubria lewi Nakane, 1952</td>
<td>Japan</td>
</tr>
<tr>
<td>M. luei Lee, Yang & Satô, 1997</td>
<td>Taiwan</td>
</tr>
<tr>
<td>M. okinawana Lee, Yang & Satô, 1997</td>
<td>Japan</td>
</tr>
<tr>
<td>M. taiwana Lee, Yang & Satô, 1997</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Microeubria sp. 1</td>
<td></td>
</tr>
<tr>
<td>Microeubria sp. 2</td>
<td></td>
</tr>
<tr>
<td>Nipponleubria yoshitomii Lee & Satô, 1996</td>
<td>Japan</td>
</tr>
<tr>
<td>Schinostethus albosculus Lee, Jách & Yang, 1998</td>
<td>Laos</td>
</tr>
<tr>
<td>S. brevicornis Lee, Jách & Yang, 1998</td>
<td>Malaysia</td>
</tr>
<tr>
<td>S. brevis (Lewis, 1895)</td>
<td></td>
</tr>
<tr>
<td>S. notatithorax (Pic, 1923)</td>
<td>Thailand</td>
</tr>
<tr>
<td>S. priscus Lee, Jách & Yang, 1998</td>
<td>Malaysia</td>
</tr>
<tr>
<td>S. satoi Lee, Yang & Brown, 1993</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Sclerocyphon striatus Lea, 1895</td>
<td>Australia</td>
</tr>
<tr>
<td>S. minus Davis, 1986</td>
<td></td>
</tr>
<tr>
<td>S. type A (sensu Davis, 1986)</td>
<td></td>
</tr>
<tr>
<td>Tychepsephus felix Waterhouse, 1876</td>
<td>Chile</td>
</tr>
<tr>
<td>Genus A sp.</td>
<td></td>
</tr>
<tr>
<td>Genus B sp.</td>
<td></td>
</tr>
<tr>
<td>Genus C sp.</td>
<td></td>
</tr>
<tr>
<td>Eubriinae</td>
<td></td>
</tr>
<tr>
<td>Afrobrianax ferdyi Lee, Philips & Yang, 2003</td>
<td>South Africa</td>
</tr>
<tr>
<td>Eubrianax amanensis Satô, 1965</td>
<td>Japan</td>
</tr>
<tr>
<td>E. edwardsi (LeConte, 1874)</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>E. ihai Chijô & Satô, 1970</td>
<td>Japan</td>
</tr>
<tr>
<td>E. loochooensis Nakane, 1852</td>
<td>Japan</td>
</tr>
<tr>
<td>E. manakikikuse Satô, 1964</td>
<td>Taiwan</td>
</tr>
<tr>
<td>E. niger Lee & Yang, 1990</td>
<td>Taiwan</td>
</tr>
<tr>
<td>E. pellucidus Lewis, 1895</td>
<td>Japan</td>
</tr>
<tr>
<td>E. secretus (Lee, Satô & Yang, 1999)</td>
<td>Taiwan</td>
</tr>
<tr>
<td>E. serratus Lee, Yang & Satô, 2001</td>
<td>Taiwan</td>
</tr>
<tr>
<td>E. tarokoensis Lee & Yang, 1990</td>
<td>Taiwan</td>
</tr>
<tr>
<td>E. meridianus Lee, Satô & Yang, 1999</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Mubrianax robustior (Pic, 1928)</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Jacheanax dentatus Lee, Satô & Yang, 2000</td>
<td>Indonesia</td>
</tr>
<tr>
<td>Jacheanax sp. A</td>
<td></td>
</tr>
<tr>
<td>Jinbrianax jaeki Lee, Satô & Yang, 1999</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Odontanach dohertyi (Pic, 1915)</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Psepheninae</td>
<td></td>
</tr>
<tr>
<td>Mataeopsephus chinensis (Nakane, 1964)</td>
<td>China</td>
</tr>
<tr>
<td>M. esakii Nakane, 1964</td>
<td>Taiwan</td>
</tr>
<tr>
<td>M. japonicus (Matsumura, 1916)</td>
<td>Japan</td>
</tr>
<tr>
<td>M. maculatus Nomura, 1957</td>
<td>Japan</td>
</tr>
</tbody>
</table>

Appendix 2. Continued.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. nitidipennis Waterhouse, 1876</td>
<td>China</td>
</tr>
<tr>
<td>M. quadrabranchiæ Lee, Jách & Satô, 2003</td>
<td>Taiwan</td>
</tr>
<tr>
<td>M. sichuanensis Lee, Jách & Satô, 2003</td>
<td>China</td>
</tr>
<tr>
<td>M. taiwanicus Lee et al., 1990</td>
<td>Taiwan</td>
</tr>
<tr>
<td>M. vietnensis Lee, Jách & Satô, 2003</td>
<td>Vietnam</td>
</tr>
<tr>
<td>Psephenus falli Casey, 1893</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>P. brevipes (De Kay, 1844)</td>
<td>U.S.A.</td>
</tr>
<tr>
<td>Phenex curvispissus Spangler, 1987</td>
<td>Venezuela</td>
</tr>
<tr>
<td>Psephenops sp.</td>
<td></td>
</tr>
<tr>
<td>Genus D sp.</td>
<td></td>
</tr>
<tr>
<td>Psephenidae</td>
<td></td>
</tr>
<tr>
<td>Psephenoides subopacus (Pic, 1954)</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Neopsephenoides sp. 1</td>
<td>Philippines</td>
</tr>
<tr>
<td>Neopsephenoides sp. 2</td>
<td>Indonesia</td>
</tr>
<tr>
<td>Afropsephenoides rathae Jeng et al., 2006</td>
<td>South Africa</td>
</tr>
<tr>
<td>Xylopsephenoides sp.</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Elmidae</td>
<td></td>
</tr>
<tr>
<td>Larinae</td>
<td></td>
</tr>
<tr>
<td>Phanocerus clavicornis Sharp, 1882</td>
<td>Costa Rica</td>
</tr>
<tr>
<td>Elminae</td>
<td></td>
</tr>
<tr>
<td>Elmis aenea (Müller, 1806)</td>
<td>Austria</td>
</tr>
</tbody>
</table>

© 2007 The Authors

Appendix 3. Character matrix for the phylogenetic analysis.

<table>
<thead>
<tr>
<th>Character</th>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
<th>State 4</th>
<th>State 5</th>
<th>State 6</th>
<th>State 7</th>
<th>State 8</th>
<th>State 9</th>
<th>State 10</th>
<th>State 11</th>
<th>State 12</th>
<th>State 13</th>
<th>State 14</th>
<th>State 15</th>
<th>State 16</th>
<th>State 17</th>
<th>State 18</th>
<th>State 19</th>
<th>State 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cneoglossa</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Phanocerus</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aethes</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sclerocyphon</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tychepsephon</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Afrotemisia</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Granuleubria</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ectopia</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Homoeogenuss</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Nipponiaebria</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Acneus</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Eubria</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Schinostethus</td>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Macroeubria</td>
<td>D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Microeubria</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dicranopsephon</td>
<td>D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Psephenoides</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neospsephenoides</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Afrospsephenoides</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Xylospsephenoides</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Jinbrianax</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Odontianax</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Jaecianax</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mabrianax</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Afrobrianax</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eubrianax</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mataeopsephon</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Phanephus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pheneps</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Psephenops</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Genus D</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

© 2007 The Authors
Appendix 3. Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jinbrianax</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Odontanax</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Jaechanax</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mubrianax</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Afrobianax</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Eubrianax</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mataeopsphasus</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pseudaphus</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Phenex</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pseudaphens</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Genus D</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Genus A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Genus B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Genus C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cneoglossa</td>
<td>?</td>
<td>1</td>
<td>0</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>Phanocerus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elmis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scleroclyphon</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tycheaphus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Afroeubria</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gramaebria</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ecitia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Homoeogenus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nipponaebria</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Acneus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Eubria</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Schinostethus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Macroebria</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Microebria</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dicranopselaphus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Psephenoids</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Neopsephenoids</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Afrosephenoides</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Xylosephenoids</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jinbrianax</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Odontanax</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jaechanax</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mubrianax</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Afrobianax</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eubrianax</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mataeopsphasus</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudaphus</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phenex</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudaphens</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Genus D</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Genus A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Genus B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Genus C</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A, 0/1; B, 0/2; C, 1/2; D, 2/3; E, 3/4; F, 0/1/2.

© 2007 The Authors